Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China; The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Department of Physics, Universitat de Barcelona, 08028 Barcelona, Spain.
J Colloid Interface Sci. 2023 Oct;647:134-141. doi: 10.1016/j.jcis.2023.05.010. Epub 2023 May 9.
In spite of the fact that lithium metal batteries (LMBs) facilitate the diversification of energy storage technologies, their electrochemical reversibility and stability have long been constrained by side reactions and lithium dendrite problems. While single-ion conducting polymer electrolytes (SICPEs) possess unique advantages of suppressing Li dendrite growth, they deal with difficulties in practical applications due to their slow ion transport in general application scenarios at ∼25 °C. In this study, we develop novel bifunctional lithium salts with negative sulfonylimide (-SON()SO-) anions mounted between two styrene reactive groups, which is capable of constructing 3D cross-linked networks with multiscale reticulated ion nanochannels, resulting in the uniform and rapid distribution of Li ions in the crosslinked electrolyte. To verify the feasibility of our strategy, we designed PVDF-HFP-based SICPEs and the obtained electrolyte exhibits high thermal stability, outstanding Li transference number (0.95), pleasing ionic conductivity (0.722 mS cm), and broad chemical window (greater than5.85 V) at ambient temperature. As a result of the electrolyte structural merits, the Li||LFP cells displayed excellent cycling stability (96.4% reversible capacities after 300 cycles at 0.2C) without additional auxiliary heating. This ingenious strategy is expected to providing a new perspective for advanced performance and high safety LMBs.
尽管锂金属电池(LMBs)有助于储能技术的多样化,但它们的电化学可逆性和稳定性长期以来一直受到副反应和锂枝晶问题的限制。虽然单离子导电聚合物电解质(SICPEs)具有抑制 Li 枝晶生长的独特优势,但由于其在一般应用场景下的离子传输速度较慢(在∼25°C 下),它们在实际应用中存在困难。在本研究中,我们开发了一种新型的双功能锂盐,其带有两个苯乙烯反应基团之间的负磺酰亚胺(-SON()SO-)阴离子,能够与多尺度网状离子纳米通道构建 3D 交联网络,从而使锂离子在交联电解质中均匀快速地分布。为了验证我们策略的可行性,我们设计了基于 PVDF-HFP 的 SICPEs,得到的电解质具有高的热稳定性、优异的锂离子迁移数(0.95)、令人满意的离子电导率(0.722 mS cm)和宽的电化学窗口(大于 5.85 V),在室温下。由于电解质结构的优点,Li||LFP 电池表现出优异的循环稳定性(在 0.2C 下 300 次循环后具有 96.4%的可逆容量),无需额外的辅助加热。这种巧妙的策略有望为先进性能和高安全性的 LMBs 提供新的视角。