Shi Linyong, Chen Hanning, Chen Kunxiang, Zhong Chengzong, Song Chong, Huang Yifeng, Wang Tong, Chen Lei, Li Chiyang, Huang Annie, Qi Songtao, Li Hong, Lu Yuntao
Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, China.
Clin Cancer Res. 2023 Aug 15;29(16):3172-3188. doi: 10.1158/1078-0432.CCR-22-3971.
Temozolomide resistance remains a major obstacle in the treatment of glioblastoma (GBM). The combination of temozolomide with another agent could offer an improved treatment option if it could overcome chemoresistance and prevent side effects. Here, we determined the critical drug that cause ferroptosis in GBM cells and elucidated the possible mechanism by which drug combination overcomes chemoresistance.
Haloperidol/temozolomide synergism was assessed in GBM cell lines with different dopamine D2 receptor (DRD2) expression in vitro and in vivo. Inhibitors of ferroptosis, autophagy, endoplasmic reticulum (ER) stress and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) were used to validate the specific mechanisms by which haloperidol and temozolomide induce ferroptosis in GBM cells.
In the present work, we demonstrate that the DRD2 level is increased by temozolomide in a time-dependent manner and is inversely correlated with temozolomide sensitivity in GBM. The DRD2 antagonist haloperidol, a butylbenzene antipsychotic, markedly induces ferroptosis and effectively enhances temozolomide efficacy in vivo and in vitro. Mechanistically, haloperidol suppressed the effect of temozolomide on cAMP by antagonizing DRD2 receptor activity, and the increases in cAMP/PKA triggered ER stress, which led to autophagy and ferroptosis. Furthermore, elevated autophagy mediates downregulation of FTH1 expression at the posttranslational level in an autophagy-dependent manner and ultimately leads to ferroptosis.
Our results provide experimental evidence for repurposing haloperidol as an effective adjunct therapy to inhibit adaptive temozolomide resistance to enhance the efficacy of chemoradiotherapy in GBM, a strategy that may have broad prospects for clinical application.
替莫唑胺耐药仍然是胶质母细胞瘤(GBM)治疗中的主要障碍。如果替莫唑胺与另一种药物联合使用能够克服化疗耐药性并预防副作用,那么这种联合用药可能会提供一种更好的治疗选择。在此,我们确定了导致GBM细胞发生铁死亡的关键药物,并阐明了联合用药克服化疗耐药性的可能机制。
在体外和体内对具有不同多巴胺D2受体(DRD2)表达的GBM细胞系评估氟哌啶醇/替莫唑胺的协同作用。使用铁死亡、自噬、内质网(ER)应激和环磷酸腺苷(cAMP)/蛋白激酶A(PKA)的抑制剂来验证氟哌啶醇和替莫唑胺诱导GBM细胞铁死亡的具体机制。
在本研究中,我们证明替莫唑胺以时间依赖性方式增加DRD2水平,且在GBM中DRD2水平与替莫唑胺敏感性呈负相关。DRD2拮抗剂氟哌啶醇(一种丁酰苯类抗精神病药物)在体内外均显著诱导铁死亡并有效增强替莫唑胺的疗效。机制上,氟哌啶醇通过拮抗DRD2受体活性抑制替莫唑胺对cAMP的作用,cAMP/PKA的增加引发内质网应激,进而导致自噬和铁死亡。此外,自噬增强以自噬依赖的方式在翻译后水平介导FTH1表达下调,最终导致铁死亡。
我们的结果为将氟哌啶醇重新用作有效辅助治疗以抑制替莫唑胺适应性耐药从而增强GBM放化疗疗效提供了实验证据,这一策略可能具有广阔的临床应用前景。