Suppr超能文献

超越临界雷诺数的通道流和达西定律的演化。

Evolution of channel flow and Darcy's law beyond the critical Reynolds number.

机构信息

Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

出版信息

Eur Phys J E Soft Matter. 2023 May 30;46(6):37. doi: 10.1140/epje/s10189-023-00289-4.

Abstract

For incompressible channel flow, there is a critical state, characterized by a critical Reynolds number Re and a critical wavevector m along the channel direction, beyond which the channel flow becomes unstable in the linear regime. In this work, we investigate the channel flow beyond the critical state and find the existence of a new fluctuating, quasi-stationary flow that comprises the laminar Poiseuille flow superposed with a counter-flow component, accompanied by vortices and anti-vortices. The net flow rate is reduced by  ~ 15% from the linear, laminar regime. Our study is facilitated by the analytical solution of the linearized, incompressible, three-dimensional (3D) Navier-Stokes (NS) equation in the channel geometry, with the Navier boundary condition, alternatively denoted as the hydrodynamic modes (HMs). By using the HMs as the complete mathematical basis for expanding the velocity in the NS equation, the Re is evaluated to 5-digit accuracy when compared to the well-known Orszag result, without invoking the standard Orr-Sommerfeld equation. Beyond Re, the analytical solution is indispensable in offering physical insight to those features of the counter-flow component that differs from any of the pressure-driven channel flows. In particular, the counter flow is found to comprise multiple HMs, some with opposite flow direction, that can lead to a net boundary reaction force along the counter-flow direction. The latter is analyzed to be necessary for satisfying Newton's law. Experimental verification of the predictions is discussed.

摘要

对于不可压缩的通道流,存在一个临界状态,其特征在于存在一个临界雷诺数 Re 和沿通道方向的临界波矢 m,超过该临界状态,在线性状态下通道流就会变得不稳定。在这项工作中,我们研究了超过临界状态的通道流,并发现了一种新的、脉动的准稳定流的存在,这种流由层流泊肃叶流叠加一个逆流分量组成,伴随着旋涡和反旋涡。与线性、层流的流动相比,净流量减少了约 15%。我们的研究得益于在通道几何形状下线性化、不可压缩的三维(3D)纳维-斯托克斯(NS)方程的解析解,以及纳维边界条件,也可以表示为流体力学模式(HMs)。通过使用 HMs 作为在 NS 方程中扩展速度的完整数学基础,与著名的 Orszag 结果相比,Re 的评估精度达到了 5 位数字,而无需调用标准的 Orr-Sommerfeld 方程。超过 Re 后,解析解对于逆流分量的那些不同于任何压力驱动的通道流的特征提供了重要的物理洞察力。特别是,发现逆流包含多个具有相反流动方向的 HMs,这可能导致沿逆流方向的净边界反作用力。分析表明,这对于满足牛顿定律是必要的。还讨论了对预测的实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be06/10229703/bc8f9a3a1e51/10189_2023_289_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验