Suppr超能文献

社会剥夺与 SARS-CoV-2 检测:法国南部一个高度对比地区的基于人群的分析。

Social deprivation and SARS-CoV-2 testing: a population-based analysis in a highly contrasted southern France region.

机构信息

Aix Marseille Univ, IRD, INSERM, SESSTIM, Aix Marseille Institute of Public Health, ISSPAM, Marseille, France.

Santé Publique France Cellule Régionale Paca-Corse, Marseille, France.

出版信息

Front Public Health. 2023 May 12;11:1162711. doi: 10.3389/fpubh.2023.1162711. eCollection 2023.

Abstract

BACKGROUND

Testing was the cornerstone of the COVID-19 epidemic response in most countries until vaccination became available for the general population. Social inequalities generally affect access to healthcare and health behaviors, and COVID-19 was rapidly shown to impact deprived population more drastically. In support of the regional health agency in Provence-Alpes-Côte d'Azur (PACA) in South-Eastern France, we analyzed the relationship between testing rate and socio-demographic characteristics of the population, to identify gaps in testing coverage and improve targeting of response strategies.

METHODS

We conducted an ecological analysis of SARS-CoV-2/COVID-19 testing rate in the PACA region, based on data aggregated at the finest spatial resolution available in France (IRIS) and by periods defined by public health implemented measures and major epidemiological changes. Using general census data, population density, and specific deprivation indices, we used principal component analysis followed by hierarchical clustering to define profiles describing local socio-demographic characteristics. We analyzed the association between these profiles and testing rates in a generalized additive multilevel model, adjusting for access to healthcare, presence of a retirement home, and the age profile of the population.

RESULTS

We identified 6 socio-demographic profiles across the 2,306 analyzed IRIS spatial units: privileged, remote, intermediate, downtown, deprived, and very deprived (ordered by increasing social deprivation index). Profiles also ranged from rural (remote) to high density urban areas (downtown, very deprived). From July 2020 to December 2021, we analyzed SARS-CoV-2/COVID-19 testing rate over 10 periods. Testing rates fluctuated strongly but were highest in privileged and downtown areas, and lowest in very deprived ones. The lowest adjusted testing rate ratios (aTRR) between privileged (reference) and other profiles occurred after implementation of a mandatory healthpass for many leisure activities in July 2021. Periods of contextual testing near Christmas displayed the largest aTRR, especially during the last periods of 2021 after the end of free convenience testing for unvaccinated individuals.

CONCLUSION

We characterized in-depth local heterogeneity and temporal trends in testing rates and identified areas and circumstances associated with low testing rates, which the regional health agency targeted specifically for the deployment of health mediation activities.

摘要

背景

在大多数国家,检测一直是应对 COVID-19 疫情的基石,直到疫苗可供大众使用。社会不平等通常会影响人们获得医疗保健和健康行为,而 COVID-19 很快就显示出对贫困人群的影响更为严重。为了支持法国东南部普罗旺斯-阿尔卑斯-蓝色海岸地区(PACA)的地区卫生机构,我们分析了检测率与人口的社会人口统计学特征之间的关系,以确定检测覆盖范围的差距,并改进应对策略的针对性。

方法

我们对 PACA 地区的 SARS-CoV-2/COVID-19 检测率进行了生态分析,基于在法国可用的最细空间分辨率(IRIS)汇总的数据,并根据公共卫生实施措施和主要流行病学变化定义了时间段。使用一般人口普查数据、人口密度和特定贫困指数,我们使用主成分分析和层次聚类来定义描述当地社会人口统计学特征的特征。我们在广义加性多层模型中分析了这些特征与检测率之间的关联,调整了获得医疗保健的机会、养老院的存在以及人口的年龄分布。

结果

我们在分析的 2306 个 IRIS 空间单元中确定了 6 种社会人口统计学特征:特权、偏远、中间、市区、贫困和非常贫困(按社会贫困指数递增排序)。这些特征的范围从农村(偏远)到高密度城市地区(市区、非常贫困)。从 2020 年 7 月到 2021 年 12 月,我们分析了 SARS-CoV-2/COVID-19 检测率的 10 个时期。检测率波动很大,但在特权和市区地区最高,在非常贫困地区最低。2021 年 7 月实施许多休闲活动强制健康通行证后,特权(参考)和其他特征之间的调整检测率比值(aTRR)最低。接近圣诞节的时期检测率较高,尤其是在 2021 年末最后几个时期,当时对未接种疫苗的个人免费便利检测结束后。

结论

我们深入描述了检测率的局部异质性和时间趋势,并确定了与低检测率相关的区域和情况,区域卫生机构专门针对这些区域和情况部署了健康调解活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/554a/10213643/54b50ee7ae93/fpubh-11-1162711-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验