Suppr超能文献

用于贝塔伏特电池的有前景的稀土掺杂、静电纺丝ZnO纳米纤维N型半导体

Promising Rare-Earth-Doped, Electrospun, ZnO Nanofiber N-type Semiconductor for Betavoltaic Batteries.

作者信息

Zhang Meng, Zhao Weijun, Wu Jingxin, Li Zhanqiang, Xue Liyan, Yang Fan, Tan Fengzhi, Chen Heng

机构信息

School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 116034 Dalian, China.

Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, China.

出版信息

ACS Omega. 2023 May 8;8(20):17644-17652. doi: 10.1021/acsomega.3c00039. eCollection 2023 May 23.

Abstract

Betavoltaic batteries, as a kind of ultimate battery, have attracted much attention. ZnO is a promising wide-bandgap semiconductor material that has great potential in solar cells, photodetectors, and photocatalysis. In this study, rare-earth (Ce, Sm, and Y)-doped ZnO nanofibers were synthesized using advanced electrospinning technology. The structure and properties of the synthesized materials were tested and analyzed. As betavoltaic battery energy conversion materials, the results show that rare-earth doping increases the UV absorbance and the specific surface area and slightly reduces the band gap. In terms of electrical performance, a deep UV (254 nm) and X-ray source (10 keV) were used to simulate a radioisotope β-source to evaluate the basic electrical properties. Among them, the output current density of Y-doped ZnO nanofibers can reach 87 nA·cm, which is 78% higher than that of traditional ZnO nanofibers, by deep UV. Besides, the photocurrent response of Y-doped ZnO nanofibers is superior to that of Ce-doped and Sm-doped ZnO nanofibers by soft X-ray. This study provides a basis for rare-earth-doped ZnO nanofibers as energy conversion devices used in betavoltaic isotope batteries.

摘要

作为一种终极电池,β伏打电池已备受关注。氧化锌(ZnO)是一种很有前景的宽带隙半导体材料,在太阳能电池、光电探测器和光催化领域具有巨大潜力。在本研究中,采用先进的静电纺丝技术合成了稀土(铈、钐和钇)掺杂的氧化锌纳米纤维。对合成材料的结构和性能进行了测试与分析。作为β伏打电池能量转换材料,结果表明,稀土掺杂提高了紫外线吸收率和比表面积,并略微降低了带隙。在电学性能方面,使用深紫外线(254纳米)和X射线源(10千电子伏特)模拟放射性同位素β源来评估基本电学性能。其中,通过深紫外线照射,钇掺杂的氧化锌纳米纤维的输出电流密度可达87纳安·平方厘米,比传统氧化锌纳米纤维高出78%。此外,通过软X射线照射,钇掺杂的氧化锌纳米纤维的光电流响应优于铈掺杂和钐掺杂的氧化锌纳米纤维。本研究为稀土掺杂的氧化锌纳米纤维作为β伏打同位素电池中的能量转换装置提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验