Motaung D E, Mhlongo G H, Nkosi S S, Malgas G F, Mwakikunga B W, Coetsee E, Swart H C, Abdallah H M I, Moyo T, Ray S S
DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research , P.O. Box 395, Pretoria 0001, South Africa.
ACS Appl Mater Interfaces. 2014 Jun 25;6(12):8981-95. doi: 10.1021/am501911y. Epub 2014 Jun 4.
We report on the room temperature ferromagnetism of various highly crystalline zinc oxide (ZnO) nanostructures, such as hexagonally shaped nanorods, nanocups, nanosamoosas, nanoplatelets, and hierarchical nano "flower-like" structures. These materials were synthesized in a shape-selective manner using simple microwave assisted hydrothermal synthesis. Thermogravimetric analyses demonstrated the as-synthesized ZnO nanostructures to be stable and of high purity. Structural analyses showed that the ZnO nanostructures are polycrystalline and wurtzite in structure, without any secondary phases. Combination of electron paramagnetic resonance, photoluminescence, and X-ray photoelectron spectroscopy studies revealed that the zinc vacancies (VZn) and singly ionized oxygen vacancies (VO(+)) located mainly on the ZnO surface are the primary defects in ZnO structures. A direct link between ferromagnetism and the relative occupancy of the VZn and VO(+) was established, suggesting that both VZn and VO(+) on the ZnO surface plays a vital role in modulating ferromagnetic behavior. An intense structure- and shape-dependent ferromagnetic signal with an effective g-value of >2.0 and a sextet hyperfine structure was shown. Moreover, a novel low field microwave absorption signal was observed and found to increase with an increase in microwave power and temperature.
我们报道了各种高度结晶的氧化锌(ZnO)纳米结构的室温铁磁性,这些结构包括六边形纳米棒、纳米杯、纳米三角粽、纳米片以及分级纳米“花状”结构。这些材料采用简单的微波辅助水热合成法以形状选择性的方式合成。热重分析表明,所合成的ZnO纳米结构稳定且纯度高。结构分析表明,ZnO纳米结构为多晶纤锌矿结构,无任何次生相。电子顺磁共振、光致发光和X射线光电子能谱研究相结合表明,主要位于ZnO表面的锌空位(VZn)和单电离氧空位(VO(+))是ZnO结构中的主要缺陷。建立了铁磁性与VZn和VO(+)相对占有率之间的直接联系,表明ZnO表面的VZn和VO(+)在调节铁磁行为中都起着至关重要的作用。展示了一种有效g值>2.0且具有六重态超精细结构的强烈的结构和形状依赖性铁磁信号。此外,还观察到一种新型的低场微波吸收信号,并且发现该信号随微波功率和温度的升高而增加。