Suppr超能文献

利用介电泳辅助双纳米阱阵列实现高效细胞-微珠封装。

Highly efficient cell-microbead encapsulation using dielectrophoresis-assisted dual-nanowell array.

作者信息

Tian Zuyuan, Yuan Zhipeng, Duarte Pedro A, Shaheen Mohamed, Wang Shaoxi, Haddon Lacey, Chen Jie

机构信息

Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada.

School of Microelectronics, Northwestern Polytechnical University, 127 Youyi St West, 710129 Xi'an, Shannxi, China.

出版信息

PNAS Nexus. 2023 May 10;2(5):pgad155. doi: 10.1093/pnasnexus/pgad155. eCollection 2023 May.

Abstract

Recent advancements in micro/nanofabrication techniques have led to the development of portable devices for high-throughput single-cell analysis through the isolation of individual target cells, which are then paired with functionalized microbeads. Compared with commercially available benchtop instruments, portable microfluidic devices can be more widely and cost-effectively adopted in single-cell transcriptome and proteome analysis. The sample utilization and cell pairing rate (∼33%) of current stochastic-based cell-bead pairing approaches are fundamentally limited by Poisson statistics. Despite versatile technologies having been proposed to reduce randomness during the cell-bead pairing process in order to statistically beat the Poisson limit, improvement of the overall pairing rate of a single cell to a single bead is typically based on increased operational complexity and extra instability. In this article, we present a dielectrophoresis (DEP)-assisted dual-nanowell array (ddNA) device, which employs an innovative microstructure design and operating process that decouples the bead- and cell-loading processes. Our ddNA design contains thousands of subnanoliter microwell pairs specifically tailored to fit both beads and cells. Interdigitated electrodes (IDEs) are placed below the microwell structure to introduce a DEP force on cells, yielding high single-cell capture and pairing rates. Experimental results with human embryonic kidney cells confirmed the suitability and reproducibility of our design. We achieved a single-bead capture rate of >97% and a cell-bead pairing rate of >75%. We anticipate that our device will enhance the application of single-cell analysis in practical clinical use and academic research.

摘要

微纳制造技术的最新进展推动了便携式设备的发展,这些设备通过分离单个目标细胞来进行高通量单细胞分析,然后将这些细胞与功能化微珠配对。与市售的台式仪器相比,便携式微流控设备在单细胞转录组和蛋白质组分析中可以更广泛且经济高效地应用。当前基于随机的细胞-微珠配对方法的样品利用率和细胞配对率(约33%)从根本上受到泊松统计的限制。尽管已经提出了多种技术来减少细胞-微珠配对过程中的随机性,以便在统计上突破泊松极限,但将单个细胞与单个微珠的整体配对率提高通常基于增加操作复杂性和额外的不稳定性。在本文中,我们展示了一种介电泳(DEP)辅助的双纳米阱阵列(ddNA)设备,该设备采用了创新的微结构设计和操作流程,将微珠加载和细胞加载过程解耦。我们的ddNA设计包含数千个专门定制的亚纳升微孔对,以适配微珠和细胞。叉指电极(IDE)置于微孔结构下方,以对细胞施加DEP力,从而实现高单细胞捕获率和配对率。用人胚肾细胞进行的实验结果证实了我们设计的适用性和可重复性。我们实现了>97%的单微珠捕获率和>75%的细胞-微珠配对率。我们预计我们的设备将增强单细胞分析在实际临床应用和学术研究中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c3/10210622/329369523e6b/pgad155f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验