Suppr超能文献

MITNet:一种融合转换器和卷积神经网络架构的 T 细胞表位预测方法。

MITNet: a fusion transformer and convolutional neural network architecture approach for T-cell epitope prediction.

机构信息

Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.

Department of Bioinformatics, Indonesia International Institute for Life Science, Jakarta, Indonesia.

出版信息

Brief Bioinform. 2023 Jul 20;24(4). doi: 10.1093/bib/bbad202.

Abstract

Classifying epitopes is essential since they can be applied in various fields, including therapeutics, diagnostics and peptide-based vaccines. To determine the epitope or peptide against an antibody, epitope mapping with peptides is the most extensively used method. However, this method is more time-consuming and inefficient than using present methods. The ability to retrieve data on protein sequences through laboratory procedures has led to the development of computational models that predict epitope binding based on machine learning and deep learning (DL). It has also evolved to become a crucial part of developing effective cancer immunotherapies. This paper proposes an architecture to generalize this case since various research strives to solve a low-performance classification problem. A proposed DL model is the fusion architecture, which combines two architectures: Transformer architecture and convolutional neural network (CNN), called MITNet and MITNet-Fusion. Combining these two architectures enriches feature space to correlate epitope labels with the binary classification method. The selected epitope-T-cell receptor (TCR) interactions are GILG, GLCT and NLVP, acquired from three databases: IEDB, VDJdb and McPAS-TCR. The previous input data was extracted using amino acid composition, dipeptide composition, spectrum descriptor and the combination of all those features called AADIP composition to encode the input data to DL architecture. For ensuring consistency, fivefold cross-validations were performed using the area under curve metric. Results showed that GILG, GLCT and NLVP received scores of 0.85, 0.87 and 0.86, respectively. Those results were compared to prior architecture and outperformed other similar deep learning models.

摘要

对表位进行分类至关重要,因为它们可以应用于多个领域,包括治疗学、诊断学和基于肽的疫苗。为了确定针对抗体的表位或肽,使用肽进行表位作图是最广泛使用的方法。然而,与使用现有方法相比,这种方法更耗时且效率更低。通过实验室程序检索蛋白质序列数据的能力导致了基于机器学习和深度学习 (DL) 的预测表位结合的计算模型的发展。它也已经发展成为开发有效癌症免疫疗法的关键部分。由于各种研究都致力于解决性能较低的分类问题,因此本文提出了一种架构来推广这种情况。提出的 DL 模型是融合架构,它结合了两种架构:Transformer 架构和卷积神经网络 (CNN),称为 MITNet 和 MITNet-Fusion。结合这两种架构丰富了特征空间,以将表位标签与二进制分类方法相关联。选择的表位-T 细胞受体 (TCR) 相互作用是从三个数据库:IEDB、VDJdb 和 McPAS-TCR 获得的 GILG、GLCT 和 NLVP。使用氨基酸组成、二肽组成、光谱描述符和这些特征的组合(称为 AADIP 组成)提取先前的输入数据,以将输入数据编码到 DL 架构中。为了确保一致性,使用曲线下面积度量值进行了五折交叉验证。结果表明,GILG、GLCT 和 NLVP 的得分分别为 0.85、0.87 和 0.86。将这些结果与先前的架构进行比较,并优于其他类似的深度学习模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验