人工智能驱动的表位预测:疫苗开发的系统综述、比较分析及实用指南
AI-driven epitope prediction: a system review, comparative analysis, and practical guide for vaccine development.
作者信息
Villanueva-Flores Francisca, Sanchez-Villamil Javier I, Garcia-Atutxa Igor
机构信息
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Mexico.
Universidad Católica de Murcia (UCAM), Av. de los Jerónimos, Murcia, Spain.
出版信息
NPJ Vaccines. 2025 Aug 30;10(1):207. doi: 10.1038/s41541-025-01258-y.
Integrating AI into epitope prediction is transforming vaccine design by delivering unprecedented accuracy, speed, and efficiency. This review synthesizes recent breakthroughs particularly CNNs, transformers, and GNNs highlighting experimentally validated models like MUNIS and GraphBepi that reveal previously overlooked epitopes. By benchmarking AI tools against traditional methods, we identify structural data integration as pivotal, offering practical strategies to translate computational predictions into actionable experimental workflows for next-generation vaccines.
将人工智能整合到表位预测中,正以前所未有的准确性、速度和效率改变疫苗设计。本综述总结了近期的突破,特别是卷积神经网络(CNNs)、变换器(transformers)和图神经网络(GNNs),重点介绍了经过实验验证的模型,如MUNIS和GraphBepi,这些模型揭示了以前被忽视的表位。通过将人工智能工具与传统方法进行基准测试,我们确定结构数据整合是关键,并提供了实用策略,以便将计算预测转化为用于下一代疫苗的可操作实验工作流程。