Suppr超能文献

二维 Janus MSiGeZ(M = Cr 和 W;Z = N、P 和 As)中谷自旋劈裂的理论预测。

Theoretical prediction of valley spin splitting in two-dimensional Janus MSiGeZ (M = Cr and W; Z = N, P, and As).

机构信息

New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210046, China.

出版信息

Phys Chem Chem Phys. 2023 Jun 15;25(23):15676-15682. doi: 10.1039/d3cp00849e.

Abstract

With the exploration of valleytronic materials in MAZ structures, larger valley spin splitting has become a hot topic of research. Based on first-principles calculations, we predicted six valleytronic 2D (two-dimensional) Janus MSiGeZ (M = Cr and W; Z = N, P, and As) materials. The valley spin splitting value of WSiGeZ (Z = N, P, and As) can reach more than 400 meV, which is favorable for the practical application of valleytronics. Two-dimensional WSiGeZ (Z = N, P, and As) materials are dynamically and mechanically stable and have an abundance of electronic properties. The two-dimensional Janus WSiGeZ (Z = N, P, and As) structures comprise both direct and indirect bandgap semiconductor materials. Among them, WSiGeN is an indirect bandgap semiconductor material with a bandgap of 1.654 eV and WSiGeP is a direct bandgap semiconductor material. The valley spin splitting originates from the symmetry breaking of the material structure and the spin-orbit coupling effect of the transition metal, which is manifested as the Berry curvature. In particular, the Berry curvature of 2D Janus WSiGeP and WSiGeAs is as high as 300 Bohr, which is quite large. The W atom has more d-orbital electrons than the Cr atom, and the SOC (spin-orbit coupling) effect is stronger; thus, the valley spin splitting value CrSiGeZ of WSiGeZ is more than 300 meV, which is quite large. In addition, the bandgap and valley spin splitting of WSiGeZ (Z = N, P, and As) can be significantly modulated by applying a biaxial strain. Our study shows that WSiGeZ (Z = N, P, and As) has great potential for valleytronic applications.

摘要

随着在 MAZ 结构中对谷电子材料的探索,更大的谷自旋劈裂成为研究的热点。基于第一性原理计算,我们预测了六个谷电子二维(2D)Janus MSiGeZ(M = Cr 和 W;Z = N、P 和 As)材料。WSiGeZ(Z = N、P 和 As)的谷自旋劈裂值可以超过 400 meV,有利于谷电子学的实际应用。二维 WSiGeZ(Z = N、P 和 As)材料在动力学和机械上都是稳定的,并且具有丰富的电子性质。二维 Janus WSiGeZ(Z = N、P 和 As)结构包含直接带隙和间接带隙半导体材料。其中,WSiGeN 是间接带隙半导体材料,带隙为 1.654 eV,WSiGeP 是直接带隙半导体材料。谷自旋劈裂源于材料结构的对称性破缺和过渡金属的自旋轨道耦合效应,表现为贝里曲率。特别是二维 Janus WSiGeP 和 WSiGeAs 的贝里曲率高达 300 玻尔,相当大。W 原子的 d 轨道电子比 Cr 原子多,SOC(自旋轨道耦合)效应更强;因此,WSiGeZ 中的 CrSiGeZ 的谷自旋劈裂值超过 300 meV,相当大。此外,通过施加双轴应变可以显著调节 WSiGeZ(Z = N、P 和 As)的带隙和谷自旋劈裂。我们的研究表明,WSiGeZ(Z = N、P 和 As)在谷电子学应用中具有巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验