Hemanth S V, Alagarsamy Saravanan
Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education (Deemed to Be University), Krishnankoil, TamilNadu India.
J Diabetes Metab Disord. 2023 Apr 14;22(1):881-895. doi: 10.1007/s40200-023-01220-6. eCollection 2023 Jun.
Diabetic retinopathy (DR) is one of the leading causes of blindness. It is important to use a comprehensive learning method to identify the DR. However, comprehensive learning methods often rely heavily on encrypted data, which can be costly and time consuming. Also, the DR function is not displayed and is scattered in the high-definition image below.
Therefore, learning how to distribute such DR functions is a big challenge. In this work, we proposed a hybrid adaptive deep learning classifier for early detection of diabetic retinopathy (HADL-DR). First, we provide an improved multichannel-based generative adversarial network (MGAN) with semi-maintenance to detect blood vessels segmentation.
By reducing the reliance on the encoded data, the following high-resolution images can be used to detect the indivisible features of some semi-observed MGAN references. Scale invariant feature transform (SIFT) function is then extracted and the best function is selected using the improved sequential approximation optimization (SAO) algorithm. After that, a hybrid recurrent neural network with long short-term memory (RNN-LSTM) is utilized for DR classification. The proposed RNN-LSTM classifier evaluated through standard benchmark Kaggle and Messidor datasets.
Finally, the simulation results are compared with the existing state-of-art classifiers in terms of accuracy, precision, recall, f-measure and area under cover (AUC), it is seen that more successful results are obtained.
糖尿病视网膜病变(DR)是导致失明的主要原因之一。采用综合学习方法来识别DR很重要。然而,综合学习方法通常严重依赖加密数据,这可能成本高昂且耗时。此外,DR功能未显示且分散在下面的高清图像中。
因此,学习如何分布此类DR功能是一项巨大挑战。在这项工作中,我们提出了一种用于早期检测糖尿病视网膜病变的混合自适应深度学习分类器(HADL-DR)。首先,我们提供一种具有半维护功能的改进型基于多通道的生成对抗网络(MGAN)来检测血管分割。
通过减少对编码数据的依赖,后续的高分辨率图像可用于检测一些半观察到的MGAN参考的不可分割特征。然后提取尺度不变特征变换(SIFT)功能,并使用改进的顺序近似优化(SAO)算法选择最佳功能。之后,利用具有长短期记忆的混合递归神经网络(RNN-LSTM)进行DR分类。所提出的RNN-LSTM分类器通过标准基准Kaggle和Messidor数据集进行评估。
最后,将模拟结果与现有最先进的分类器在准确性、精确率、召回率、F值和覆盖面积(AUC)方面进行比较,可以看出获得了更成功的结果。