Suppr超能文献

基于最优特征提取与分类的混合自适应深度学习分类器用于糖尿病视网膜病变的早期检测

Hybrid adaptive deep learning classifier for early detection of diabetic retinopathy using optimal feature extraction and classification.

作者信息

Hemanth S V, Alagarsamy Saravanan

机构信息

Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education (Deemed to Be University), Krishnankoil, TamilNadu India.

出版信息

J Diabetes Metab Disord. 2023 Apr 14;22(1):881-895. doi: 10.1007/s40200-023-01220-6. eCollection 2023 Jun.

Abstract

OBJECTIVES

Diabetic retinopathy (DR) is one of the leading causes of blindness. It is important to use a comprehensive learning method to identify the DR. However, comprehensive learning methods often rely heavily on encrypted data, which can be costly and time consuming. Also, the DR function is not displayed and is scattered in the high-definition image below.

METHODS

Therefore, learning how to distribute such DR functions is a big challenge. In this work, we proposed a hybrid adaptive deep learning classifier for early detection of diabetic retinopathy (HADL-DR). First, we provide an improved multichannel-based generative adversarial network (MGAN) with semi-maintenance to detect blood vessels segmentation.

RESULTS

By reducing the reliance on the encoded data, the following high-resolution images can be used to detect the indivisible features of some semi-observed MGAN references. Scale invariant feature transform (SIFT) function is then extracted and the best function is selected using the improved sequential approximation optimization (SAO) algorithm. After that, a hybrid recurrent neural network with long short-term memory (RNN-LSTM) is utilized for DR classification. The proposed RNN-LSTM classifier evaluated through standard benchmark Kaggle and Messidor datasets.

CONCLUSION

Finally, the simulation results are compared with the existing state-of-art classifiers in terms of accuracy, precision, recall, f-measure and area under cover (AUC), it is seen that more successful results are obtained.

摘要

目的

糖尿病视网膜病变(DR)是导致失明的主要原因之一。采用综合学习方法来识别DR很重要。然而,综合学习方法通常严重依赖加密数据,这可能成本高昂且耗时。此外,DR功能未显示且分散在下面的高清图像中。

方法

因此,学习如何分布此类DR功能是一项巨大挑战。在这项工作中,我们提出了一种用于早期检测糖尿病视网膜病变的混合自适应深度学习分类器(HADL-DR)。首先,我们提供一种具有半维护功能的改进型基于多通道的生成对抗网络(MGAN)来检测血管分割。

结果

通过减少对编码数据的依赖,后续的高分辨率图像可用于检测一些半观察到的MGAN参考的不可分割特征。然后提取尺度不变特征变换(SIFT)功能,并使用改进的顺序近似优化(SAO)算法选择最佳功能。之后,利用具有长短期记忆的混合递归神经网络(RNN-LSTM)进行DR分类。所提出的RNN-LSTM分类器通过标准基准Kaggle和Messidor数据集进行评估。

结论

最后,将模拟结果与现有最先进的分类器在准确性、精确率、召回率、F值和覆盖面积(AUC)方面进行比较,可以看出获得了更成功的结果。

相似文献

1
Hybrid adaptive deep learning classifier for early detection of diabetic retinopathy using optimal feature extraction and classification.
J Diabetes Metab Disord. 2023 Apr 14;22(1):881-895. doi: 10.1007/s40200-023-01220-6. eCollection 2023 Jun.
2
Deep long and short term memory based Red Fox optimization algorithm for diabetic retinopathy detection and classification.
Int J Numer Method Biomed Eng. 2022 Mar;38(3):e3560. doi: 10.1002/cnm.3560. Epub 2021 Dec 15.
4
Diabetic retinopathy classification based on multipath CNN and machine learning classifiers.
Phys Eng Sci Med. 2021 Sep;44(3):639-653. doi: 10.1007/s13246-021-01012-3. Epub 2021 May 25.
6
Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy.
Biomed Eng Lett. 2017 Aug 31;8(1):41-57. doi: 10.1007/s13534-017-0047-y. eCollection 2018 Feb.
7
Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
Front Med (Lausanne). 2022 Nov 8;9:1050436. doi: 10.3389/fmed.2022.1050436. eCollection 2022.
8
Optimized hybrid machine learning approach for smartphone based diabetic retinopathy detection.
Multimed Tools Appl. 2022;81(10):14475-14501. doi: 10.1007/s11042-022-12103-y. Epub 2022 Feb 25.
9
Level-set based adaptive-active contour segmentation technique with long short-term memory for diabetic retinopathy classification.
Front Bioeng Biotechnol. 2023 Dec 19;11:1286966. doi: 10.3389/fbioe.2023.1286966. eCollection 2023.
10
A Hybrid Technique for Diabetic Retinopathy Detection Based on Ensemble-Optimized CNN and Texture Features.
Diagnostics (Basel). 2023 May 22;13(10):1816. doi: 10.3390/diagnostics13101816.

引用本文的文献

2
A stacked ensemble machine learning approach for the prediction of diabetes.
J Diabetes Metab Disord. 2023 Nov 22;23(1):603-617. doi: 10.1007/s40200-023-01321-2. eCollection 2024 Jun.

本文引用的文献

1
An Effective Method for Detecting and Classifying Diabetic Retinopathy Lesions Based on Deep Learning.
Comput Math Methods Med. 2021 May 31;2021:9928899. doi: 10.1155/2021/9928899. eCollection 2021.
2
Ensemble Framework of Deep CNNs for Diabetic Retinopathy Detection.
Comput Intell Neurosci. 2020 Dec 9;2020:8864698. doi: 10.1155/2020/8864698. eCollection 2020.
3
Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy.
Biomed Eng Lett. 2017 Aug 31;8(1):41-57. doi: 10.1007/s13534-017-0047-y. eCollection 2018 Feb.
4
Automatic Detection of Retinal Lesions for Screening of Diabetic Retinopathy.
IEEE Trans Biomed Eng. 2018 Mar;65(3):608-618. doi: 10.1109/TBME.2017.2707578. Epub 2017 May 24.
5
Deep image mining for diabetic retinopathy screening.
Med Image Anal. 2017 Jul;39:178-193. doi: 10.1016/j.media.2017.04.012. Epub 2017 Apr 28.
7
Automated Diabetic Retinopathy Screening and Monitoring Using Retinal Fundus Image Analysis.
J Diabetes Sci Technol. 2016 Feb 16;10(2):254-61. doi: 10.1177/1932296816628546.
8
Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images.
IEEE Trans Med Imaging. 2016 May;35(5):1273-1284. doi: 10.1109/TMI.2016.2526689. Epub 2016 Feb 8.
9
Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening.
IEEE Trans Med Imaging. 2016 Apr;35(4):1116-26. doi: 10.1109/TMI.2015.2509785. Epub 2015 Dec 17.
10
Computer-aided diagnosis of plus disease via measurement of vessel thickness in retinal fundus images of preterm infants.
Comput Biol Med. 2015 Nov 1;66:316-29. doi: 10.1016/j.compbiomed.2015.09.009. Epub 2015 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验