Mansour Romany F
Department of Mathematics, Faculty of Science, New Valley - Assiut University, Assiut, Egypt.
Biomed Eng Lett. 2017 Aug 31;8(1):41-57. doi: 10.1007/s13534-017-0047-y. eCollection 2018 Feb.
The high-pace rise in advanced computing and imaging systems has given rise to a new research dimension called computer-aided diagnosis (CAD) system for various biomedical purposes. CAD-based diabetic retinopathy (DR) can be of paramount significance to enable early disease detection and diagnosis decision. Considering the robustness of deep neural networks (DNNs) to solve highly intricate classification problems, in this paper, AlexNet DNN, which functions on the basis of convolutional neural network (CNN), has been applied to enable an optimal DR CAD solution. The DR model applies a multilevel optimization measure that incorporates pre-processing, adaptive-learning-based Gaussian mixture model (GMM)-based concept region segmentation, connected component-analysis-based region of interest (ROI) localization, AlexNet DNN-based highly dimensional feature extraction, principle component analysis (PCA)- and linear discriminant analysis (LDA)-based feature selection, and support-vector-machine-based classification to ensure optimal five-class DR classification. The simulation results with standard KAGGLE fundus datasets reveal that the proposed AlexNet DNN-based DR exhibits a better performance with LDA feature selection, where it exhibits a DR classification accuracy of 97.93% with FC7 features, whereas with PCA, it shows 95.26% accuracy. Comparative analysis with spatial invariant feature transform (SIFT) technique (accuracy-94.40%) based DR feature extraction also confirms that AlexNet DNN-based DR outperforms SIFT-based DR.
先进计算和成像系统的快速发展催生了一个新的研究领域,即用于各种生物医学目的的计算机辅助诊断(CAD)系统。基于CAD的糖尿病视网膜病变(DR)对于早期疾病检测和诊断决策具有至关重要的意义。考虑到深度神经网络(DNN)在解决高度复杂分类问题方面的稳健性,本文应用了基于卷积神经网络(CNN)的AlexNet DNN,以实现最佳的DR CAD解决方案。该DR模型采用了一种多级优化措施,包括预处理、基于自适应学习的高斯混合模型(GMM)的概念区域分割、基于连通分量分析的感兴趣区域(ROI)定位、基于AlexNet DNN的高维特征提取、基于主成分分析(PCA)和线性判别分析(LDA)的特征选择以及基于支持向量机的分类,以确保实现最佳的五类DR分类。使用标准KAGGLE眼底数据集的仿真结果表明,所提出的基于AlexNet DNN的DR在采用LDA特征选择时表现出更好的性能,其中使用FC7特征时DR分类准确率为97.93%,而采用PCA时准确率为95.26%。与基于空间不变特征变换(SIFT)技术(准确率为94.40%)的DR特征提取进行的对比分析也证实,基于AlexNet DNN的DR优于基于SIFT的DR。