Suppr超能文献

基于深度学习的糖尿病视网膜病变自动计算机辅助诊断系统。

Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy.

作者信息

Mansour Romany F

机构信息

Department of Mathematics, Faculty of Science, New Valley - Assiut University, Assiut, Egypt.

出版信息

Biomed Eng Lett. 2017 Aug 31;8(1):41-57. doi: 10.1007/s13534-017-0047-y. eCollection 2018 Feb.

Abstract

The high-pace rise in advanced computing and imaging systems has given rise to a new research dimension called computer-aided diagnosis (CAD) system for various biomedical purposes. CAD-based diabetic retinopathy (DR) can be of paramount significance to enable early disease detection and diagnosis decision. Considering the robustness of deep neural networks (DNNs) to solve highly intricate classification problems, in this paper, AlexNet DNN, which functions on the basis of convolutional neural network (CNN), has been applied to enable an optimal DR CAD solution. The DR model applies a multilevel optimization measure that incorporates pre-processing, adaptive-learning-based Gaussian mixture model (GMM)-based concept region segmentation, connected component-analysis-based region of interest (ROI) localization, AlexNet DNN-based highly dimensional feature extraction, principle component analysis (PCA)- and linear discriminant analysis (LDA)-based feature selection, and support-vector-machine-based classification to ensure optimal five-class DR classification. The simulation results with standard KAGGLE fundus datasets reveal that the proposed AlexNet DNN-based DR exhibits a better performance with LDA feature selection, where it exhibits a DR classification accuracy of 97.93% with FC7 features, whereas with PCA, it shows 95.26% accuracy. Comparative analysis with spatial invariant feature transform (SIFT) technique (accuracy-94.40%) based DR feature extraction also confirms that AlexNet DNN-based DR outperforms SIFT-based DR.

摘要

先进计算和成像系统的快速发展催生了一个新的研究领域,即用于各种生物医学目的的计算机辅助诊断(CAD)系统。基于CAD的糖尿病视网膜病变(DR)对于早期疾病检测和诊断决策具有至关重要的意义。考虑到深度神经网络(DNN)在解决高度复杂分类问题方面的稳健性,本文应用了基于卷积神经网络(CNN)的AlexNet DNN,以实现最佳的DR CAD解决方案。该DR模型采用了一种多级优化措施,包括预处理、基于自适应学习的高斯混合模型(GMM)的概念区域分割、基于连通分量分析的感兴趣区域(ROI)定位、基于AlexNet DNN的高维特征提取、基于主成分分析(PCA)和线性判别分析(LDA)的特征选择以及基于支持向量机的分类,以确保实现最佳的五类DR分类。使用标准KAGGLE眼底数据集的仿真结果表明,所提出的基于AlexNet DNN的DR在采用LDA特征选择时表现出更好的性能,其中使用FC7特征时DR分类准确率为97.93%,而采用PCA时准确率为95.26%。与基于空间不变特征变换(SIFT)技术(准确率为94.40%)的DR特征提取进行的对比分析也证实,基于AlexNet DNN的DR优于基于SIFT的DR。

相似文献

1
Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy.
Biomed Eng Lett. 2017 Aug 31;8(1):41-57. doi: 10.1007/s13534-017-0047-y. eCollection 2018 Feb.
4
Diabetic retinopathy classification based on multipath CNN and machine learning classifiers.
Phys Eng Sci Med. 2021 Sep;44(3):639-653. doi: 10.1007/s13246-021-01012-3. Epub 2021 May 25.
6
Hybrid adaptive deep learning classifier for early detection of diabetic retinopathy using optimal feature extraction and classification.
J Diabetes Metab Disord. 2023 Apr 14;22(1):881-895. doi: 10.1007/s40200-023-01220-6. eCollection 2023 Jun.
9
Effective methods of diabetic retinopathy detection based on deep convolutional neural networks.
Int J Comput Assist Radiol Surg. 2021 Dec;16(12):2177-2187. doi: 10.1007/s11548-021-02498-8. Epub 2021 Oct 4.
10
Breast cancer detection using deep convolutional neural networks and support vector machines.
PeerJ. 2019 Jan 28;7:e6201. doi: 10.7717/peerj.6201. eCollection 2019.

引用本文的文献

2
Deep learning-based optical coherence tomography and retinal images for detection of diabetic retinopathy: a systematic and meta analysis.
Front Endocrinol (Lausanne). 2025 Mar 18;16:1485311. doi: 10.3389/fendo.2025.1485311. eCollection 2025.
3
Classification of diabetic retinopathy algorithm based on a novel dual-path multi-module model.
Med Biol Eng Comput. 2025 Feb;63(2):365-381. doi: 10.1007/s11517-024-03194-w. Epub 2024 Sep 25.
5
Enhancing deep learning pre-trained networks on diabetic retinopathy fundus photographs with SLIC-G.
Med Biol Eng Comput. 2024 Aug;62(8):2571-2583. doi: 10.1007/s11517-024-03093-0. Epub 2024 Apr 23.
6
10
Hybrid adaptive deep learning classifier for early detection of diabetic retinopathy using optimal feature extraction and classification.
J Diabetes Metab Disord. 2023 Apr 14;22(1):881-895. doi: 10.1007/s40200-023-01220-6. eCollection 2023 Jun.

本文引用的文献

3
Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening.
IEEE Trans Med Imaging. 2016 Apr;35(4):1116-26. doi: 10.1109/TMI.2015.2509785. Epub 2015 Dec 17.
4
Computer-aided diagnosis of diabetic retinopathy: a review.
Comput Biol Med. 2013 Dec;43(12):2136-55. doi: 10.1016/j.compbiomed.2013.10.007. Epub 2013 Oct 14.
5
An ensemble-based system for microaneurysm detection and diabetic retinopathy grading.
IEEE Trans Biomed Eng. 2012 Jun;59(6):1720-6. doi: 10.1109/TBME.2012.2193126. Epub 2012 Apr 3.
6
The evidence for automated grading in diabetic retinopathy screening.
Curr Diabetes Rev. 2011 Jul;7(4):246-52. doi: 10.2174/157339911796397802.
7
Automated identification of diabetic retinopathy stages using digital fundus images.
J Med Syst. 2008 Apr;32(2):107-15. doi: 10.1007/s10916-007-9113-9.
8
The efficacy of automated "disease/no disease" grading for diabetic retinopathy in a systematic screening programme.
Br J Ophthalmol. 2007 Nov;91(11):1512-7. doi: 10.1136/bjo.2007.119453. Epub 2007 May 15.
9
Effective gaussian mixture learning for video background subtraction.
IEEE Trans Pattern Anal Mach Intell. 2005 May;27(5):827-32. doi: 10.1109/TPAMI.2005.102.
10
Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool.
Br J Ophthalmol. 1996 Nov;80(11):940-4. doi: 10.1136/bjo.80.11.940.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验