Suppr超能文献

用于磷酸化蛋白质组学和泛素化蛋白质组学数据非依赖型采集数据的无数据依赖采集(DDA)文库策略评估

Evaluation of DDA Library-Free Strategies for Phosphoproteomics and Ubiquitinomics Data-Independent Acquisition Data.

作者信息

Wen Chengwen, Wu Xiurong, Lin Guanzhong, Yan Wei, Gan Guohong, Xu Xiao, Chen Xiang-Yu, Chen Xi, Liu Xianming, Fu Guo, Zhong Chuan-Qi

机构信息

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, Fujian, China.

SpecAlly Life Technology Co., Ltd., Wuhan 430074, Hubei, China.

出版信息

J Proteome Res. 2023 Jul 7;22(7):2232-2245. doi: 10.1021/acs.jproteome.2c00735. Epub 2023 May 31.

Abstract

Phosphoproteomics and ubiquitinomics data-independent acquisition (DIA) mass spectrometry (MS) data is typically analyzed by using a data-dependent acquisition (DDA) spectral library. The performance of various library-free strategies for analyzing phosphoproteomics and ubiquitinomics DIA MS data has not been evaluated. In this study, we systematically compare four commonly used DDA library-free approaches including Spectronaut's directDIA, DIA-Umpire, DIA-MSFragger, and in silico-predicted library for analysis of phosphoproteomics SWATH, DIA, and diaPASEF data as well as ubiquitinomics diaPASEF data. Spectronaut's directDIA shows the highest sensitivity for phosphopeptide detection not only in synthetic phosphopeptide samples but also in phosphoproteomics SWATH-MS and DIA data from real biological samples, when compared to the other three library-free strategies. For phosphoproteomics diaPASEF data, Spectronaut's directDIA and the in silico-predicted library based on DIA-NN identify almost the same number of phosphopeptides as a project-specific DDA spectral library. However, only about 30% of the total phosphopeptides are commonly identified, suggesting that the library-free strategies for phospho-diaPASEF data need further improvement in terms of sensitivity. For ubiquitinomics diaPASEF data, the in silico-predicted library performs the best among the four workflows and detects ∼50% more K-GG peptides than a project-specific DDA spectral library. Our results demonstrate that Spectronaut's directDIA is suitable for the analysis of phosphoproteomics SWATH-MS and DIA MS data, while the in silico-predicted library based on DIA-NN shows substantial advantages for ubiquitinomics diaPASEF MS data.

摘要

磷酸化蛋白质组学和泛素化蛋白质组学的数据非依赖采集(DIA)质谱(MS)数据通常使用数据依赖采集(DDA)光谱库进行分析。尚未评估用于分析磷酸化蛋白质组学和泛素化蛋白质组学DIA MS数据的各种无库策略的性能。在本研究中,我们系统地比较了四种常用的无DDA库方法,包括Spectronaut的directDIA、DIA-Umpire、DIA-MSFragger以及用于分析磷酸化蛋白质组学SWATH、DIA和diaPASEF数据以及泛素化蛋白质组学diaPASEF数据的计算机预测库。与其他三种无库策略相比,Spectronaut的directDIA不仅在合成磷酸肽样品中,而且在来自真实生物样品的磷酸化蛋白质组学SWATH-MS和DIA数据中,对磷酸肽检测显示出最高的灵敏度。对于磷酸化蛋白质组学diaPASEF数据,Spectronaut的directDIA和基于DIA-NN的计算机预测库识别出的磷酸肽数量几乎与项目特定的DDA光谱库相同。然而,仅约30%的总磷酸肽是共同识别的,这表明用于磷酸化diaPASEF数据的无库策略在灵敏度方面需要进一步改进。对于泛素化蛋白质组学diaPASEF数据,计算机预测库在四种工作流程中表现最佳,并且比项目特定的DDA光谱库多检测约50%的K-GG肽。我们的结果表明,Spectronaut的directDIA适用于分析磷酸化蛋白质组学SWATH-MS和DIA MS数据,而基于DIA-NN的计算机预测库对于泛素化蛋白质组学diaPASEF MS数据显示出显著优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验