Suppr超能文献

通过掺入氧化石墨烯来调整生物兼容摩擦电水凝胶的电子俘获效应,以实现自供电医疗电子。

Tailoring the Electron Trapping Effect of a Biocompatible Triboelectric Hydrogel by Graphene Oxide Incorporation towards Self-Powered Medical Electronics.

机构信息

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.

INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.

出版信息

ACS Biomater Sci Eng. 2023 Jun 12;9(6):3712-3722. doi: 10.1021/acsbiomaterials.2c01513. Epub 2023 May 31.

Abstract

Triboelectric nanogenerators (TENGs) are associated with several drawbacks that limit their application in the biomedical field, including toxicity, thrombogenicity, and poor performance in the presence of fluids. By proposing the use of a hemo/biocompatible hydrogel, poly(2-hydroxyethyl methacrylate) (pHEMA), this study bypasses these barriers. In contact-separation mode, using polytetrafluoroethylene (PTFE) as a reference, pHEMA generates an output of 100.0 V, under an open circuit, 4.7 μA, and 0.68 W/m for an internal resistance of 10 MΩ. Our findings unveil that graphene oxide (GO) can be used to tune pHEMA's triboelectric properties in a concentration-dependent manner. At the lowest measured concentration (0.2% GO), the generated outputs increase to 194.5 V, 5.3 μA, and 1.28 W/m due to the observed increase in pHEMA's surface roughness, which expands the contact area. Triboelectric performance starts to decrease as GO concentration increases, plateauing at 11% volumetric, where the output is 51 V, 1.76 μA, and 0.17 W/m less than pHEMA's. Increases in internal resistance, from 14 ΩM to greater than 470 ΩM, ζ-potential, from -7.3 to -0.4 mV, and open-circuit characteristic charge decay periods, from 90 to 120 ms, are all observed in conjunction with this phenomenon, which points to GO function as an electron trapping site in pHEMA's matrix. All of the composites can charge a 10 μF capacitor in 200 s, producing a voltage between 0.25 and 3.5 V and allowing the operation of at least 20 LEDs. The triboelectric output was largely steady throughout the 3.33 h durability test. Voltage decreases by 38% due to contact-separation frequency, whereas current increases by 77%. In terms of pressure, it appears to have little effect on voltage but boosts current output by 42%. Finally, pHEMA and pHEMA/GO extracts were cytocompatible toward fibroblasts. According to these results, pHEMA has a significant potential to function as a biomaterial to create bio/hemocompatible TENGs and GO to precisely control its triboelectric outputs.

摘要

摩擦纳米发电机(TENGs)存在一些限制其在生物医学领域应用的缺点,包括毒性、血栓形成性和在存在流体时性能不佳。本研究通过提出使用血液/生物相容性水凝胶聚(2-羟乙基甲基丙烯酸酯)(pHEMA)来克服这些障碍。在接触-分离模式下,以聚四氟乙烯(PTFE)为参比,pHEMA 在开路时产生 100.0 V 的输出、4.7 μA 和 0.68 W/m,内部电阻为 10 MΩ。我们的研究结果表明,氧化石墨烯(GO)可以用于以浓度依赖的方式调节 pHEMA 的摩擦电特性。在测量的最低浓度(0.2%GO)下,由于 pHEMA 表面粗糙度的增加,接触面积扩大,产生的输出增加到 194.5 V、5.3 μA 和 1.28 W/m。随着 GO 浓度的增加,摩擦电性能开始下降,在 11%体积时达到平台,此时输出为 51 V、1.76 μA 和 0.17 W/m,比 pHEMA 的输出少。内部电阻从 14 ΩM 增加到大于 470 ΩM,ζ-电位从-7.3 mV 变为-0.4 mV,开路特性电荷衰减时间从 90 ms 变为 120 ms,所有这些都与 GO 作为 pHEMA 基质中的电子捕获位点的功能有关。所有复合材料都可以在 200 s 内为 10 μF 电容器充电,产生 0.25 至 3.5 V 的电压,并允许至少 20 个 LED 工作。在 3.33 小时的耐久性测试中,摩擦电输出基本稳定。由于接触-分离频率,电压下降 38%,而电流增加 77%。就压力而言,它似乎对电压影响不大,但会将电流输出提高 42%。最后,pHEMA 和 pHEMA/GO 提取物对成纤维细胞具有细胞相容性。根据这些结果,pHEMA 具有作为生物材料的巨大潜力,可以制造出生物/血液相容性 TENG,而 GO 可以精确控制其摩擦电输出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42d9/10265651/023ed5178c9f/ab2c01513_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验