Suppr超能文献

数据驱动的临床药学研究:利用机器学习和医疗大数据。

Data-Driven Clinical Pharmacy Research: Utilizing Machine Learning and Medical Big Data.

机构信息

Division of Drug Informatics, Keio University Faculty of Pharmacy.

出版信息

Biol Pharm Bull. 2024;47(10):1594-1599. doi: 10.1248/bpb.b24-00492.

Abstract

To conduct clinical pharmacy research, we often face the limitations of conventional statistical methods and single-center observational study. To overcome these issues, we have conducted data-driven research using machine learning methods and medical big data. Decision tree analysis, one of the typical machine learning methods, has a flowchart-like structure that allows users to easily and quantitatively evaluate the occurrence percentage of events due to the combination of multiple factors by answering related questions with Yes or No. Using this feature, we first developed a risk prediction model for acute kidney injury caused by vancomycin, a condition we frequently encounter in clinical practice. Additionally, by replacing the prediction target from a binary variable (i.e., presence or absence of adverse drug reactions) to a continuous variable (i.e., drug dosage), we built a model to estimate the initial dose of vancomycin required to reach the optimal blood level recommended by guidelines. We found its accuracy to be better than that of conventional dose-setting algorithms. Moreover, employing Japanese medical big data such as the claims database helped us overcome the major limitations of conventional clinical pharmacy research such as institutional bias caused by single-center studies. We demonstrated that the combined use of machine learning and medical big data could generate high-quality evidence leveraging the strengths of each approach. Data-driven clinical pharmacy research using machine learning and medical big data has enabled researchers to surpass the limitations of conventional research and produce clinically valuable findings.

摘要

为了开展临床药学研究,我们经常面临常规统计方法和单中心观察性研究的局限性。为了克服这些问题,我们使用机器学习方法和医疗大数据进行了数据驱动的研究。决策树分析是一种典型的机器学习方法,其流程图式的结构使用户可以通过回答是或否的相关问题,轻松地定量评估由于多个因素组合而导致事件发生的百分比。利用这一特性,我们首先开发了一种预测万古霉素引起急性肾损伤的风险模型,这种情况在临床实践中经常遇到。此外,通过将预测目标从二分类变量(即不良反应的存在与否)替换为连续变量(即药物剂量),我们构建了一个模型来估计达到指南推荐的最佳血药浓度所需的万古霉素初始剂量。我们发现其准确性优于传统的剂量设定算法。此外,利用日本的医疗大数据,如理赔数据库,帮助我们克服了传统临床药学研究的主要局限性,如单中心研究造成的机构偏见。我们证明了机器学习和医疗大数据的联合使用可以利用每种方法的优势产生高质量的证据。使用机器学习和医疗大数据进行数据驱动的临床药学研究使研究人员能够超越传统研究的局限性,并产生具有临床价值的发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验