指导乳腺癌新辅助化疗应用的多基因谱:一项哥本哈根乳腺癌基因组学研究。

Multigene profiles to guide the use of neoadjuvant chemotherapy for breast cancer: a Copenhagen Breast Cancer Genomics Study.

作者信息

Jensen M-B, Pedersen C B, Misiakou M-A, Talman M-L M, Gibson L, Tange U B, Kledal H, Vejborg I, Kroman N, Nielsen F C, Ejlertsen B, Rossing M

机构信息

Danish Breast Cancer Cooperative Group, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

出版信息

NPJ Breast Cancer. 2023 May 31;9(1):47. doi: 10.1038/s41523-023-00551-0.

Abstract

Estrogen receptor (ER) and human epidermal growth factor 2 (HER2) expression guide the use of neoadjuvant chemotherapy (NACT) in patients with early breast cancer. We evaluate the independent predictive value of adding a multigene profile (CIT256 and PAM50) to immunohistochemical (IHC) profile regarding pathological complete response (pCR) and conversion of positive to negative axillary lymph node status. The cohort includes 458 patients who had genomic profiling performed as standard of care. Using logistic regression, higher pCR and node conversion rates among patients with Non-luminal subtypes are shown, and importantly the predictive value is independent of IHC profile. In patients with ER-positive and HER2-negative breast cancer an odds ratio of 9.78 (95% CI 2.60;36.8), P < 0.001 is found for pCR among CIT256 Non-luminal vs. Luminal subtypes. The results suggest a role for integrated use of up-front multigene subtyping for selection of a neoadjuvant approach in ER-positive HER2-negative breast cancer.

摘要

雌激素受体(ER)和人表皮生长因子2(HER2)的表达指导早期乳腺癌患者新辅助化疗(NACT)的使用。我们评估了在免疫组织化学(IHC)检测基础上增加多基因谱(CIT256和PAM50)对于病理完全缓解(pCR)以及腋窝淋巴结状态由阳性转为阴性的独立预测价值。该队列包括458例接受了作为标准治疗的基因检测的患者。使用逻辑回归分析显示,非腔面亚型患者的pCR率和淋巴结转化率更高,重要的是,该预测价值独立于IHC检测结果。在ER阳性且HER2阴性的乳腺癌患者中,CIT256非腔面亚型与腔面亚型相比,pCR的优势比为9.78(95%CI 2.60;36.8),P < 0.001。结果表明,对于ER阳性HER2阴性乳腺癌患者,预先使用多基因亚型综合检测在选择新辅助治疗方案中具有一定作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8598/10232408/6e7b6bef45d2/41523_2023_551_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索