Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA.
Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
Cancer Cell. 2022 Jun 13;40(6):609-623.e6. doi: 10.1016/j.ccell.2022.05.005. Epub 2022 May 26.
Using pre-treatment gene expression, protein/phosphoprotein, and clinical data from the I-SPY2 neoadjuvant platform trial (NCT01042379), we create alternative breast cancer subtypes incorporating tumor biology beyond clinical hormone receptor (HR) and human epidermal growth factor receptor-2 (HER2) status to better predict drug responses. We assess the predictive performance of mechanism-of-action biomarkers from ∼990 patients treated with 10 regimens targeting diverse biology. We explore >11 subtyping schemas and identify treatment-subtype pairs maximizing the pathologic complete response (pCR) rate over the population. The best performing schemas incorporate Immune, DNA repair, and HER2/Luminal phenotypes. Subsequent treatment allocation increases the overall pCR rate to 63% from 51% using HR/HER2-based treatment selection. pCR gains from reclassification and improved patient selection are highest in HR subsets (>15%). As new treatments are introduced, the subtyping schema determines the minimum response needed to show efficacy. This data platform provides an unprecedented resource and supports the usage of response-based subtypes to guide future treatment prioritization.
利用 I-SPY2 新辅助平台试验(NCT01042379)的预处理基因表达、蛋白/磷酸化蛋白和临床数据,我们创建了替代的乳腺癌亚型,纳入了超出临床激素受体(HR)和人表皮生长因子受体 2(HER2)状态的肿瘤生物学特征,以更好地预测药物反应。我们评估了针对多种生物学靶点的 10 种方案治疗的约 990 名患者的作用机制生物标志物的预测性能。我们探索了超过 11 种分类方案,并确定了最大限度提高人群病理完全缓解(pCR)率的治疗-亚型对。表现最佳的方案纳入了免疫、DNA 修复和 HER2/腔表型。与基于 HR/HER2 的治疗选择相比,后续的治疗分配将总体 pCR 率从 51%提高到 63%。HR 亚组(>15%)的重新分类和改善患者选择带来的 pCR 获益最高。随着新疗法的引入,分类方案决定了显示疗效所需的最小反应。该数据平台提供了前所未有的资源,并支持使用基于反应的亚型来指导未来的治疗优先级。