School of Computer Science and Engineering, Xi'an Technological University, Xi'an, 710021, China.
School of Computer Science, Hubei University of Technology, Wuhan, 430068, China.
Sci Rep. 2023 May 31;13(1):8833. doi: 10.1038/s41598-023-36054-y.
Accumulating evidence shows that pseudogenes can function as microRNAs (miRNAs) sponges and regulate gene expression. Mining potential interactions between pseudogenes and miRNAs will facilitate the clinical diagnosis and treatment of complex diseases. However, identifying their interactions through biological experiments is time-consuming and labor intensive. In this study, an ensemble learning framework with similarity kernel fusion is proposed to predict pseudogene-miRNA associations, named ELPMA. First, four pseudogene similarity profiles and five miRNA similarity profiles are measured based on the biological and topology properties. Subsequently, similarity kernel fusion method is used to integrate the similarity profiles. Then, the feature representation for pseudogenes and miRNAs is obtained by combining the pseudogene-pseudogene similarities, miRNA-miRNA similarities. Lastly, individual learners are performed on each training subset, and the soft voting is used to yield final decision based on the prediction results of individual learners. The k-fold cross validation is implemented to evaluate the prediction performance of ELPMA method. Besides, case studies are conducted on three investigated pseudogenes to validate the predict performance of ELPMA method for predicting pseudogene-miRNA interactions. Therefore, all experiment results show that ELPMA model is a feasible and effective tool to predict interactions between pseudogenes and miRNAs.
越来越多的证据表明,假基因可以作为 microRNAs(miRNAs)的海绵并调节基因表达。挖掘假基因和 miRNAs 之间的潜在相互作用将有助于复杂疾病的临床诊断和治疗。然而,通过生物实验来识别它们的相互作用既费时又费力。在这项研究中,提出了一种基于相似性核融合的集成学习框架来预测假基因-miRNA 关联,称为 ELPMA。首先,基于生物学和拓扑特性,测量了四个假基因相似性轮廓和五个 miRNA 相似性轮廓。然后,使用相似性核融合方法来整合相似性轮廓。接下来,通过结合假基因-假基因相似性、miRNA-miRNA 相似性来获得假基因和 miRNA 的特征表示。最后,在每个训练子集上执行个体学习者,并根据个体学习者的预测结果使用软投票得出最终决策。通过 k 折交叉验证来评估 ELPMA 方法的预测性能。此外,还对三个研究的假基因进行了案例研究,以验证 ELPMA 方法在预测假基因-miRNA 相互作用方面的预测性能。因此,所有实验结果表明,ELPMA 模型是一种可行且有效的预测假基因和 miRNAs 之间相互作用的工具。
Brief Bioinform. 2022-1-17
Front Genet. 2021-12-13
BMC Bioinformatics. 2019-12-3
IEEE/ACM Trans Comput Biol Bioinform. 2017-11-22
Artif Intell Med. 2021-8
Brief Bioinform. 2022-1-17
Front Genet. 2022-9-13
Brief Bioinform. 2022-9-20