文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于集成学习框架和相似性核融合的假基因-miRNA 关联推断。

Inferring pseudogene-MiRNA associations based on an ensemble learning framework with similarity kernel fusion.

机构信息

School of Computer Science and Engineering, Xi'an Technological University, Xi'an, 710021, China.

School of Computer Science, Hubei University of Technology, Wuhan, 430068, China.

出版信息

Sci Rep. 2023 May 31;13(1):8833. doi: 10.1038/s41598-023-36054-y.


DOI:10.1038/s41598-023-36054-y
PMID:37258695
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10232424/
Abstract

Accumulating evidence shows that pseudogenes can function as microRNAs (miRNAs) sponges and regulate gene expression. Mining potential interactions between pseudogenes and miRNAs will facilitate the clinical diagnosis and treatment of complex diseases. However, identifying their interactions through biological experiments is time-consuming and labor intensive. In this study, an ensemble learning framework with similarity kernel fusion is proposed to predict pseudogene-miRNA associations, named ELPMA. First, four pseudogene similarity profiles and five miRNA similarity profiles are measured based on the biological and topology properties. Subsequently, similarity kernel fusion method is used to integrate the similarity profiles. Then, the feature representation for pseudogenes and miRNAs is obtained by combining the pseudogene-pseudogene similarities, miRNA-miRNA similarities. Lastly, individual learners are performed on each training subset, and the soft voting is used to yield final decision based on the prediction results of individual learners. The k-fold cross validation is implemented to evaluate the prediction performance of ELPMA method. Besides, case studies are conducted on three investigated pseudogenes to validate the predict performance of ELPMA method for predicting pseudogene-miRNA interactions. Therefore, all experiment results show that ELPMA model is a feasible and effective tool to predict interactions between pseudogenes and miRNAs.

摘要

越来越多的证据表明,假基因可以作为 microRNAs(miRNAs)的海绵并调节基因表达。挖掘假基因和 miRNAs 之间的潜在相互作用将有助于复杂疾病的临床诊断和治疗。然而,通过生物实验来识别它们的相互作用既费时又费力。在这项研究中,提出了一种基于相似性核融合的集成学习框架来预测假基因-miRNA 关联,称为 ELPMA。首先,基于生物学和拓扑特性,测量了四个假基因相似性轮廓和五个 miRNA 相似性轮廓。然后,使用相似性核融合方法来整合相似性轮廓。接下来,通过结合假基因-假基因相似性、miRNA-miRNA 相似性来获得假基因和 miRNA 的特征表示。最后,在每个训练子集上执行个体学习者,并根据个体学习者的预测结果使用软投票得出最终决策。通过 k 折交叉验证来评估 ELPMA 方法的预测性能。此外,还对三个研究的假基因进行了案例研究,以验证 ELPMA 方法在预测假基因-miRNA 相互作用方面的预测性能。因此,所有实验结果表明,ELPMA 模型是一种可行且有效的预测假基因和 miRNAs 之间相互作用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a9a/10232424/65412f6e02ea/41598_2023_36054_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a9a/10232424/ac944092305b/41598_2023_36054_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a9a/10232424/fab3e975e48f/41598_2023_36054_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a9a/10232424/43b54abf85a0/41598_2023_36054_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a9a/10232424/65412f6e02ea/41598_2023_36054_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a9a/10232424/ac944092305b/41598_2023_36054_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a9a/10232424/fab3e975e48f/41598_2023_36054_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a9a/10232424/43b54abf85a0/41598_2023_36054_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a9a/10232424/65412f6e02ea/41598_2023_36054_Fig4_HTML.jpg

相似文献

[1]
Inferring pseudogene-MiRNA associations based on an ensemble learning framework with similarity kernel fusion.

Sci Rep. 2023-5-31

[2]
Predicting miRNA-disease associations using an ensemble learning framework with resampling method.

Brief Bioinform. 2022-1-17

[3]
Predicting Pseudogene-miRNA Associations Based on Feature Fusion and Graph Auto-Encoder.

Front Genet. 2021-12-13

[4]
An improved random forest-based computational model for predicting novel miRNA-disease associations.

BMC Bioinformatics. 2019-12-3

[5]
DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases.

IEEE/ACM Trans Comput Biol Bioinform. 2017-11-22

[6]
MvKFN-MDA: Multi-view Kernel Fusion Network for miRNA-disease association prediction.

Artif Intell Med. 2021-8

[7]
MiRNA-disease interaction prediction based on kernel neighborhood similarity and multi-network bidirectional propagation.

BMC Med Genomics. 2019-12-23

[8]
ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction.

RNA Biol. 2018-5-25

[9]
Ensemble of kernel ridge regression-based small molecule-miRNA association prediction in human disease.

Brief Bioinform. 2022-1-17

[10]
Prioritizing CircRNA-Disease Associations With Convolutional Neural Network Based on Multiple Similarity Feature Fusion.

Front Genet. 2020-9-16

引用本文的文献

[1]
Integration of RNA-seq and ATAC-seq analyzes the effect of low dose neutron-γ radiation on gene expression of lymphocytes from oilfield logging workers.

Front Chem. 2023-11-30

本文引用的文献

[1]
Predicting lncRNA-disease associations based on combining selective similarity matrix fusion and bidirectional linear neighborhood label propagation.

Brief Bioinform. 2023-1-19

[2]
lncRNA-disease association prediction method based on the nearest neighbor matrix completion model.

Sci Rep. 2022-12-15

[3]
SPCMLMI: A structural perturbation-based matrix completion method to predict lncRNA-miRNA interactions.

Front Genet. 2022-11-15

[4]
A clustering-based sampling method for miRNA-disease association prediction.

Front Genet. 2022-9-13

[5]
Updated review of advances in microRNAs and complex diseases: towards systematic evaluation of computational models.

Brief Bioinform. 2022-11-19

[6]
Updated review of advances in microRNAs and complex diseases: experimental results, databases, webservers and data fusion.

Brief Bioinform. 2022-11-19

[7]
A novel circRNA-miRNA association prediction model based on structural deep neural network embedding.

Brief Bioinform. 2022-9-20

[8]
Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models.

Brief Bioinform. 2022-9-20

[9]
KGDCMI: A New Approach for Predicting circRNA-miRNA Interactions From Multi-Source Information Extraction and Deep Learning.

Front Genet. 2022-8-16

[10]
Pseudogene MSTO2P Interacts with miR-128-3p to Regulate Coptisine Sensitivity of Non-Small-Cell Lung Cancer (NSCLC) through TGF- Signaling and VEGFC.

J Oncol. 2022-6-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索