Suppr超能文献

KGDCMI:一种从多源信息提取和深度学习预测环状RNA-微小RNA相互作用的新方法。

KGDCMI: A New Approach for Predicting circRNA-miRNA Interactions From Multi-Source Information Extraction and Deep Learning.

作者信息

Wang Xin-Fei, Yu Chang-Qing, Li Li-Ping, You Zhu-Hong, Huang Wen-Zhun, Li Yue-Chao, Ren Zhong-Hao, Guan Yong-Jian

机构信息

School of Information Engineering, Xijing University, Xi'an, China.

College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China.

出版信息

Front Genet. 2022 Aug 16;13:958096. doi: 10.3389/fgene.2022.958096. eCollection 2022.

Abstract

Emerging evidence has revealed that circular RNA (circRNA) is widely distributed in mammalian cells and functions as microRNA (miRNA) sponges involved in transcriptional and posttranscriptional regulation of gene expression. Recognizing the circRNA-miRNA interaction provides a new perspective for the detection and treatment of human complex diseases. Compared with the traditional biological experimental methods used to predict the association of molecules, which are limited to the small-scale and are time-consuming and laborious, computing models can provide a basis for biological experiments at low cost. Considering that the proposed calculation model is limited, it is necessary to develop an effective computational method to predict the circRNA-miRNA interaction. This study thus proposed a novel computing method, named KGDCMI, to predict the interactions between circRNA and miRNA based on multi-source information extraction and fusion. The KGDCMI obtains RNA attribute information from sequence and similarity, capturing the behavior information in RNA association through a graph-embedding algorithm. Then, the obtained feature vector is extracted further by principal component analysis and sent to the deep neural network for information fusion and prediction. At last, KGDCMI obtains the prediction accuracy (area under the curve [AUC] = 89.30% and area under the precision-recall curve [AUPR] = 87.67%). Meanwhile, with the same dataset, KGDCMI is 2.37% and 3.08%, respectively, higher than the only existing model, and we conducted three groups of comparative experiments, obtaining the best classification strategy, feature extraction parameters, and dimensions. In addition, in the performed case study, 7 of the top 10 interaction pairs were confirmed in PubMed. These results suggest that KGDCMI is a feasible and useful method to predict the circRNA-miRNA interaction and can act as a reliable candidate for related RNA biological experiments.

摘要

新出现的证据表明,环状RNA(circRNA)广泛分布于哺乳动物细胞中,并作为微小RNA(miRNA)海绵发挥作用,参与基因表达的转录和转录后调控。认识circRNA与miRNA的相互作用为人类复杂疾病的检测和治疗提供了新的视角。与用于预测分子关联的传统生物学实验方法相比,传统方法限于小规模,且耗时费力,计算模型能够以低成本为生物学实验提供依据。鉴于所提出的计算模型存在局限性,有必要开发一种有效的计算方法来预测circRNA与miRNA的相互作用。因此,本研究提出了一种名为KGDCMI的新型计算方法,用于基于多源信息提取和融合来预测circRNA与miRNA之间的相互作用。KGDCMI从序列和相似性中获取RNA属性信息,通过图嵌入算法捕捉RNA关联中的行为信息。然后,通过主成分分析进一步提取得到的特征向量,并将其发送到深度神经网络进行信息融合和预测。最后,KGDCMI获得了预测准确率(曲线下面积[AUC]=89.30%,精确召回率曲线下面积[AUPR]=87.67%)。同时,在相同数据集上,KGDCMI分别比仅有的现有模型高2.37%和3.08%,并且我们进行了三组对比实验,获得了最佳分类策略、特征提取参数和维度。此外,在进行的案例研究中,前10个相互作用对中有7个在PubMed中得到了证实。这些结果表明,KGDCMI是一种预测circRNA与miRNA相互作用的可行且有用的方法,并且可以作为相关RNA生物学实验的可靠候选方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee68/9426772/93a2b2a2df55/fgene-13-958096-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验