Suppr超能文献

与II/III期结直肠癌化疗反应和生存相关的高通量蛋白质组学分析衍生特征。

High-throughput proteomics profiling-derived signature associated with chemotherapy response and survival for stage II/III colorectal cancer.

作者信息

Ye Shu-Biao, Cheng Yi-Kan, Li Pei-Si, Zhang Lin, Zhang Lian-Hai, Huang Yan, Chen Ping, Wang Yi, Wang Chao, Peng Jian-Hong, Shi Li-Shuo, Ling Li, Wu Xiao-Jian, Qin Jun, Yang Zi-Huan, Lan Ping

机构信息

Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.

Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.

出版信息

NPJ Precis Oncol. 2023 May 31;7(1):50. doi: 10.1038/s41698-023-00400-0.

Abstract

Adjuvant chemotherapy (ACT) is usually used to reduce the risk of disease relapse and improve survival for stage II/III colorectal cancer (CRC). However, only a subset of patients could benefit from ACT. Thus, there is an urgent need to identify improved biomarkers to predict survival and stratify patients to refine the selection of ACT. We used high-throughput proteomics to analyze tumor and adjacent normal tissues of stage II/III CRC patients with /without relapse to identify potential markers for predicting prognosis and benefit from ACT. The machine learning approach was applied to identify relapse-specific markers. Then the artificial intelligence (AI)-assisted multiplex IHC was performed to validate the prognostic value of the relapse-specific markers and construct a proteomic-derived classifier for stage II/III CRC using 3 markers, including FHL3, GGA1, TGFBI. The proteomics profiling-derived signature for stage II/III CRC (PS) not only shows good accuracy to classify patients into high and low risk of relapse and mortality in all three cohorts, but also works independently of clinicopathologic features. ACT was associated with improved disease-free survival (DFS) and overall survival (OS) in stage II (pN0) patients with high PS and pN2 patients with high PS. This study demonstrated the clinical significance of proteomic features, which serve as a valuable source for potential biomarkers. The PS classifier provides prognostic value for identifying patients at high risk of relapse and mortality and optimizes individualized treatment strategy by detecting patients who may benefit from ACT for survival.

摘要

辅助化疗(ACT)通常用于降低II/III期结直肠癌(CRC)疾病复发风险并提高生存率。然而,只有一部分患者能从ACT中获益。因此,迫切需要识别出能更好地预测生存情况并对患者进行分层的生物标志物,以优化ACT的选择。我们使用高通量蛋白质组学分析了有/无复发的II/III期CRC患者的肿瘤组织和相邻正常组织,以识别预测预后及从ACT中获益的潜在标志物。采用机器学习方法识别复发特异性标志物。然后进行人工智能(AI)辅助多重免疫组化,以验证复发特异性标志物的预后价值,并使用包括FHL3、GGA1、TGFBI在内的3种标志物构建II/III期CRC的蛋白质组学衍生分类器。II/III期CRC的蛋白质组学分析衍生特征(PS)不仅在所有三个队列中都能很好地将患者分为复发和死亡高风险组与低风险组,而且独立于临床病理特征发挥作用。在高PS的II期(pN0)患者和高PS的pN2患者中,ACT与无病生存期(DFS)和总生存期(OS)的改善相关。本研究证明了蛋白质组学特征的临床意义,其可作为潜在生物标志物的宝贵来源。PS分类器为识别复发和死亡高风险患者提供预后价值,并通过检测可能从ACT中获益以提高生存率的患者来优化个体化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8ac/10232411/f5c8f0cd9569/41698_2023_400_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验