Microelectronics & VLSI lab, National Institute of Technology, Patna, 800005, India.
J Mol Model. 2023 May 31;29(6):193. doi: 10.1007/s00894-023-05533-4.
In this work, we have investigated the electrochemical characteristics of armchair silicon carbide nanoribbon (ASiCNR) for its potential deployment as 2D lithium-ion battery anode material. Density functional theory approach is used to calculate the adsorption energy, storage capacity, and open circuit voltage of ASiCNR for LIB. Adsorption of Li atoms introduces the new energy bands which cross the Fermi level; this results in semiconductor to metallic transition of ASiCNR. It indicates the strong interaction of Li atoms towards the ASiCNR. When adsorption of Li atoms increases one by one, the adsorption energy (E[Formula: see text]) per Li atoms increases gradually. When all favourable sites are adsorbed by Li atoms E[Formula: see text] reached its maximum value and it results in maximum storage capacity of 818 mAhg[Formula: see text] and open circuit voltage of 1.15 V. Diffusion barrier of Li atoms for the substrate is 0.42 eV. Our computational results suggest that ASiCNR can be used as an anode material for Li-ion batteries, and it provides the theoretical background for the future study on ASiCNR and other Li storage structures.
在这项工作中,我们研究了扶手椅型碳化硅纳米带(ASiCNR)的电化学特性,因为它有可能被用作二维锂离子电池的阳极材料。我们使用密度泛函理论方法来计算 ASiCNR 对 LIB 的吸附能、存储容量和开路电压。Li 原子的吸附引入了穿过费米能级的新能带;这导致 ASiCNR 从半导体到金属的转变。这表明 Li 原子与 ASiCNR 之间存在强烈的相互作用。当 Li 原子逐个吸附时,每个 Li 原子的吸附能(E[Formula: see text])逐渐增加。当所有有利的位置都被 Li 原子吸附时,E[Formula: see text]达到最大值,从而实现 818 mAhg[Formula: see text]的最大存储容量和 1.15 V 的开路电压。Li 原子在衬底上的扩散势垒为 0.42 eV。我们的计算结果表明,ASiCNR 可用作锂离子电池的阳极材料,为未来对 ASiCNR 和其他 Li 存储结构的研究提供了理论基础。