Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
Neuroscience Center, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
J Neuroinflammation. 2023 May 31;20(1):133. doi: 10.1186/s12974-023-02812-y.
Traumatic brain injury (TBI) remains a major cause of death and severe disability worldwide. We found previously that treatment with exogenous naïve B cells was associated with structural and functional neuroprotection after TBI. Here, we used a mouse model of unilateral controlled cortical contusion TBI to investigate cellular mechanisms of immunomodulation associated with intraparenchymal delivery of mature naïve B lymphocytes at the time of injury. Exogenous B cells showed a complex time-dependent response in the injury microenvironment, including significantly increased expression of IL-10, IL-35, and TGFβ, but also IL-2, IL-6, and TNFα. After 10 days in situ, B cell subsets expressing IL-10 or TGFβ dominated. Immune infiltration into the injury predominantly comprised myeloid cells, and B cell treatment did not alter overall numbers of infiltrating cells. In the presence of B cells, significantly more infiltrating myeloid cells produced IL-10, TGFβ, and IL-35, and fewer produced TNFα, interferon-γ and IL-6 as compared to controls, up to 2 months post-TBI. B cell treatment significantly increased the proportion of CD206 infiltrating monocytes/macrophages and reduced the relative proportion of activated microglia starting at 4 days and up to 2 months post-injury. Ablation of peripheral monocytes with clodronate liposomes showed that infiltrating peripheral monocytes/macrophages are required for inducing the regulatory phenotype in exogenous B cells. Reciprocally, B cells specifically reduced the expression of inflammatory cytokines in infiltrating Ly6C monocytes/macrophages. These data support the hypothesis that peripheral myeloid cells, particularly infiltrating monocyte/macrophages, are key mediators of the neuroprotective immunomodulatory effects observed after B cell treatment.
创伤性脑损伤(TBI)仍然是全球范围内导致死亡和严重残疾的主要原因。我们之前发现,在 TBI 后,用外源性幼稚 B 细胞治疗与结构和功能神经保护有关。在这里,我们使用单侧控制皮质挫伤 TBI 的小鼠模型,研究与损伤时脑内给予成熟幼稚 B 淋巴细胞相关的免疫调节的细胞机制。外源性 B 细胞在损伤微环境中表现出复杂的时间依赖性反应,包括 IL-10、IL-35 和 TGFβ的表达显著增加,但也包括 IL-2、IL-6 和 TNFα。在原位 10 天后,表达 IL-10 或 TGFβ的 B 细胞亚群占主导地位。免疫细胞浸润到损伤部位主要是髓样细胞,B 细胞治疗并没有改变浸润细胞的总数。在 B 细胞存在的情况下,与对照组相比,浸润的髓样细胞产生更多的 IL-10、TGFβ和 IL-35,而产生更少的 TNFα、干扰素-γ和 IL-6,直至 TBI 后 2 个月。B 细胞治疗显著增加了浸润性 CD206+单核细胞/巨噬细胞的比例,并减少了激活的小胶质细胞的相对比例,从损伤后 4 天开始,直至 2 个月。用氯膦酸盐脂质体清除外周单核细胞表明,浸润的外周单核细胞/巨噬细胞是诱导外源性 B 细胞产生调节表型所必需的。相反,B 细胞特异性地降低了浸润性 Ly6C+单核细胞/巨噬细胞中炎症细胞因子的表达。这些数据支持了这样一种假设,即外周髓样细胞,特别是浸润的单核细胞/巨噬细胞,是 B 细胞治疗后观察到的神经保护免疫调节作用的关键介质。