文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

切伦科夫诱导光动力疗法中闪烁元件的附加值

Added Value of Scintillating Element in Cerenkov-Induced Photodynamic Therapy.

作者信息

Schneller Perrine, Collet Charlotte, Been Quentin, Rocchi Paul, Lux François, Tillement Olivier, Barberi-Heyob Muriel, Schohn Hervé, Daouk Joël

机构信息

Department of Biology, Signals and Systems in Cancer and Neuroscience, UMR 7039, Université de Lorraine, French National Scientific Research Center (CNRS), Research Center for Automatic Control (CRAN), UMR CNRS 7039 CRAN, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, BP10299, CEDEX, 54505 Vandoeuvre-lès-Nancy, France.

NancyCloTEP, Molecular Imaging Platform, Université de Lorraine, Brabois Hospital, 54600 Vandoeuvre-lès-Nancy, France.

出版信息

Pharmaceuticals (Basel). 2023 Jan 18;16(2):143. doi: 10.3390/ph16020143.


DOI:10.3390/ph16020143
PMID:37259295
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9963809/
Abstract

Cerenkov-induced photodynamic therapy (CR-PDT) with the use of Gallium-68 (Ga) as an unsealed radioactive source has been proposed as an alternative strategy to X-ray-induced photodynamic therapy (X-PDT). This new strategy still aims to produce a photodynamic effect with the use of nanoparticles, namely, AGuIX. Recently, we replaced Gd from the AGuIX@ platform with Terbium (Tb) as a nanoscintillator and added 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenylporphyrin (P1) as a photosensitizer (referred to as AGuIX@Tb-P1). Although Cerenkov luminescence from Ga positrons is involved in nanoscintillator and photosensitizer activation, the cytotoxic effect obtained by PDT remains controversial. Herein, we tested whether free Ga could substitute X-rays of X-PDT to obtain a cytotoxic phototherapeutic effect. Results were compared with those obtained with AGuIX@Gd-P1 nanoparticles. We showed, by Monte Carlo simulations, the contribution of Tb scintillation in P1 activation by an energy transfer between Tb and P1 after Cerenkov radiation, compared to the Gd-based nanoparticles. We confirmed the involvement of the type II PDT reaction during Ga-mediated Cerenkov luminescence, id est, the transfer of photon to AGuIX@Tb-P1 which, in turn, generated P1-mediated singlet oxygen. The effect of Ga on cell survival was studied by clonogenic assays using human glioblastoma U-251 MG cells. Exposure of pre-treated cells with AGuIX@Tb-P1 to Ga resulted in the decrease in cell clone formation, unlike AGuIX@Gd-P1. We conclude that CR-PDT could be an alternative of X-PDT.

摘要

利用镓 - 68(Ga)作为非密封放射源的切伦科夫诱导光动力疗法(CR - PDT)已被提议作为X射线诱导光动力疗法(X - PDT)的替代策略。这种新策略仍旨在通过使用纳米颗粒(即AGuIX)产生光动力效应。最近,我们用铽(Tb)作为纳米闪烁体取代了AGuIX@平台中的钆(Gd),并添加了5 - (4 - 羧基苯基琥珀酰亚胺酯)-10,15,20 - 三苯基卟啉(P1)作为光敏剂(称为AGuIX@Tb - P1)。尽管来自Ga正电子的切伦科夫发光参与了纳米闪烁体和光敏剂的激活,但光动力疗法获得的细胞毒性作用仍存在争议。在此,我们测试了游离Ga是否可以替代X - PDT中的X射线以获得细胞毒性光疗效果。将结果与使用AGuIX@Gd - P1纳米颗粒获得的结果进行比较。通过蒙特卡罗模拟,我们展示了与基于Gd的纳米颗粒相比,切伦科夫辐射后Tb闪烁通过Tb和P1之间的能量转移对P1激活的贡献。我们证实了在Ga介导的切伦科夫发光过程中II型光动力疗法反应的参与,即光子转移到AGuIX@Tb - P1,进而产生P1介导的单线态氧。使用人胶质母细胞瘤U - 251 MG细胞通过克隆形成试验研究了Ga对细胞存活的影响。与AGuIX@Gd - P1不同,用AGuIX@Tb - P1预处理的细胞暴露于Ga会导致细胞克隆形成减少。我们得出结论,CR - PDT可能是X - PDT的一种替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/7e94788430e7/pharmaceuticals-16-00143-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/3592a603c679/pharmaceuticals-16-00143-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/2cab3d7ff400/pharmaceuticals-16-00143-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/f46720080fb6/pharmaceuticals-16-00143-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/abcbb0e5be2d/pharmaceuticals-16-00143-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/4a7216ed1737/pharmaceuticals-16-00143-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/7e94788430e7/pharmaceuticals-16-00143-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/3592a603c679/pharmaceuticals-16-00143-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/2cab3d7ff400/pharmaceuticals-16-00143-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/f46720080fb6/pharmaceuticals-16-00143-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/abcbb0e5be2d/pharmaceuticals-16-00143-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/4a7216ed1737/pharmaceuticals-16-00143-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a38/9963809/7e94788430e7/pharmaceuticals-16-00143-g005.jpg

相似文献

[1]
Added Value of Scintillating Element in Cerenkov-Induced Photodynamic Therapy.

Pharmaceuticals (Basel). 2023-1-18

[2]
Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy.

Pharmaceuticals (Basel). 2021-4-22

[3]
Energy Transfer between AGuIX Nanoparticles and Photofrin under Light or X-ray Excitation for PDT Applications.

Pharmaceuticals (Basel). 2024-8-5

[4]
Novel applications of diagnostic X-rays in activating a clinical photodynamic drug: Photofrin II through X-ray induced visible luminescence from "rare-earth" formulated particles.

J Xray Sci Technol. 2011

[5]
Activating TiO Nanoparticles: Gallium-68 Serves as a High-Yield Photon Emitter for Cerenkov-Induced Photodynamic Therapy.

ACS Appl Mater Interfaces. 2018-2-5

[6]
Nanoscintillator-Based X-Ray-Induced Photodynamic Therapy.

Methods Mol Biol. 2022

[7]
Nanoparticles to mediate X-ray-induced photodynamic therapy and Cherenkov radiation photodynamic therapy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018-7-31

[8]
Benchmarking a novel inorganic scintillation detector for applications in radiation therapy.

Phys Med. 2019-11-27

[9]
Multiscale Selectivity and in vivo Biodistribution of NRP-1Targeted Theranostic AGuIX Nanoparticles for PDT of Glioblastoma.

Int J Nanomedicine. 2020-11-9

[10]
Europium-Diethylenetriaminepentaacetic Acid Loaded Radioluminescence Liposome Nanoplatform for Effective Radioisotope-Mediated Photodynamic Therapy.

ACS Nano. 2020-10-27

引用本文的文献

[1]
Novel Drug Delivery Particles Can Provide Dual Effects on Cancer "Theranostics" in Boron Neutron Capture Therapy.

Cells. 2025-1-6

[2]
Non-targeted effects of radiation therapy for glioblastoma.

Heliyon. 2024-5-9

[3]
Investigation of Photodynamic Therapy Promoted by Cherenkov Light Activated Photosensitizers-New Aspects and Revelations.

Pharmaceutics. 2024-4-13

本文引用的文献

[1]
AGuIX nanoparticles enhance ionizing radiation-induced ferroptosis on tumor cells by targeting the NRF2-GPX4 signaling pathway.

J Nanobiotechnology. 2022-10-14

[2]
2021 WHO classification of tumours of the central nervous system: a review for the neuroradiologist.

Neuroradiology. 2022-10

[3]
Obstacles to Glioblastoma Treatment Two Decades after Temozolomide.

Cancers (Basel). 2022-6-30

[4]
Fully Automated Macro- and Microfluidic Production of [Ga]Ga-Citrate on mAIO and iMiDEV Modules.

Molecules. 2022-2-1

[5]
Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy.

Pharmaceuticals (Basel). 2021-4-22

[6]
Technical Note: Standalone application to generate custom reflectance Look-Up Table for advanced optical Monte Carlo simulation in GATE/Geant4.

Med Phys. 2021-6

[7]
What NIR photodynamic activation offers molecular targeted nanomedicines: Perspectives into the conundrum of tumor specificity and selectivity.

Nano Today. 2021-2

[8]
OpenDose: Open-Access Resource for Nuclear Medicine Dosimetry.

J Nucl Med. 2020-10

[9]
A "Missile-Detonation" Strategy to Precisely Supply and Efficiently Amplify Cerenkov Radiation Energy for Cancer Theranostics.

Adv Mater. 2019-11-11

[10]
Radiation-Induced Mitotic Catastrophe Enhanced by Gold Nanoparticles: Assessment with a Specific Automated Image Processing Workflow.

Radiat Res. 2019-4-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索