文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

激活 TiO2 纳米粒子:镓-68 可作为契伦科夫辐射诱导光动力治疗的高效光子发射器。

Activating TiO Nanoparticles: Gallium-68 Serves as a High-Yield Photon Emitter for Cerenkov-Induced Photodynamic Therapy.

机构信息

Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, and ‡Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China.

出版信息

ACS Appl Mater Interfaces. 2018 Feb 14;10(6):5278-5286. doi: 10.1021/acsami.7b17902. Epub 2018 Feb 5.


DOI:10.1021/acsami.7b17902
PMID:29368518
Abstract

The classical photodynamic therapy (PDT) requires external light to activate photosensitizers for cancer treatment. However, limited tissue penetration of light has been a long-standing challenge for PDT to cure malignant tumors in deep tissues. Recently, Cerenkov radiation (CR) emitted by radiotracers such as F-fluorodeoxyglucose (F-FDG) has become an alternative and promising internal light source. Nevertheless, fluorine-18 (F-18) only releases 1.3 photons per decay in average; consequently, injection dose of F-18 goes beyond 10-30 times more than usual to acquire therapeutic efficacy because of its low Cerenkov productivity. Gallium-68 (Ga-68) is a favorable CR source owing to its ready availability from generator and 30-time higher Cerenkov productivity. Herein, we report, for the first time, the use of Ga-68 as a CR source to activate dextran-modified TiO nanoparticles (D-TiO NPs) for CR-induced PDT. Compared with F-FDG, Ga-labeled bovine serum albumin (Ga-BSA) inhibited the growth of 4T1 cells and exhibited significantly stronger DNA damage to tumor cells. In vivo studies showed that the tumor growth was almost completely inhibited when tumor-bearing mice were treated with a combination of D-TiO NPs and Ga-BSA. This study proved that Ga-68 is a more potent radionuclide for PDT than F-18 both in vitro and in vivo offered a promising strategy of using a diagnostic dose of radioactivity to achieve depth-independent cancer therapy without using any external light source.

摘要

经典的光动力疗法(PDT)需要外部光线来激活光敏剂以治疗癌症。然而,光在组织中的穿透深度有限,这一直是 PDT 治疗深部组织恶性肿瘤的长期挑战。最近,放射性示踪剂(如 F-氟脱氧葡萄糖(F-FDG))发出的切伦科夫辐射(CR)已成为一种替代且有前途的内部光源。然而,氟-18(F-18)每次衰变平均仅释放 1.3 个光子;因此,由于其低切伦科夫产率,F-18 的注射剂量比通常需要的高出 10-30 倍以上,才能获得治疗效果。镓-68(Ga-68)是一种理想的 CR 源,因为它可以从发生器中获得,并且其切伦科夫产率高出 30 倍。在此,我们首次报道了使用 Ga-68 作为 CR 源来激活葡聚糖修饰的 TiO 纳米粒子(D-TiO NPs)以进行 CR 诱导的 PDT。与 F-FDG 相比,镓标记的牛血清白蛋白(Ga-BSA)抑制了 4T1 细胞的生长,并对肿瘤细胞表现出更强的 DNA 损伤。体内研究表明,当荷瘤小鼠接受 D-TiO NPs 和 Ga-BSA 联合治疗时,肿瘤生长几乎完全受到抑制。这项研究证明,Ga-68 无论是在体外还是体内,都是比 F-18 更有效的 PDT 放射性核素,为使用诊断剂量的放射性核素实现无需任何外部光源的深度独立癌症治疗提供了一种有前途的策略。

相似文献

[1]
Activating TiO Nanoparticles: Gallium-68 Serves as a High-Yield Photon Emitter for Cerenkov-Induced Photodynamic Therapy.

ACS Appl Mater Interfaces. 2018-2-5

[2]
Chlorin e6-loaded goat milk-derived extracellular vesicles for Cerenkov luminescence-induced photodynamic therapy.

Eur J Nucl Med Mol Imaging. 2023-1

[3]
Aggregation-induced emission photosensitizer/bacteria biohybrids enhance Cerenkov radiation-induced photodynamic therapy by activating anti-tumor immunity for synergistic tumor treatment.

Acta Biomater. 2023-9-1

[4]
Cherenkov Radiation induced photodynamic therapy - repurposing older photosensitizers, and radionuclides.

Photodiagnosis Photodyn Ther. 2023-12

[5]
Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin e6-Loaded Hollow Mesoporous Silica Nanoparticles.

ACS Appl Mater Interfaces. 2016-9-30

[6]
Effect of Cerenkov Radiation-Induced Photodynamic Therapy with F-FDG in an Intraperitoneal Xenograft Mouse Model of Ovarian Cancer.

Int J Mol Sci. 2021-5-6

[7]
Magnetic Targeting of Nanotheranostics Enhances Cerenkov Radiation-Induced Photodynamic Therapy.

J Am Chem Soc. 2018-10-29

[8]
(68)Ga-labeled 3PRGD2 for dual PET and Cerenkov luminescence imaging of orthotopic human glioblastoma.

Bioconjug Chem. 2015-6-17

[9]
Radioiodinated Persistent Luminescence Nanoplatform for Radiation-Induced Photodynamic Therapy and Radiotherapy.

Adv Healthc Mater. 2021-3

[10]
Minimizing adverse effects of Cerenkov radiation induced photodynamic therapy with transformable photosensitizer-loaded nanovesicles.

J Nanobiotechnology. 2022-4-27

引用本文的文献

[1]
Radionuclide-labeled nanomaterials for tumor therapy: Recent progress and perspectives.

Mater Today Bio. 2025-8-5

[2]
Nuclear Nanomedicines: Utilization of Radiolabelling Strategies, Drug Formulation, Delivery, and Regulatory Aspects for Disease Management.

Curr Radiopharm. 2025

[3]
Impact of UV-Irradiated Mesoporous Titania Nanoparticles (mTiNPs) on Key Onco- and Tumor Suppressor microRNAs of PC3 Prostate Cancer Cells.

Genes (Basel). 2025-1-25

[4]
Engineering photodynamics for treatment, priming and imaging.

Nat Rev Bioeng. 2024-9

[5]
Radionuclide-labelled nanoparticles for cancer combination therapy: a review.

J Nanobiotechnology. 2024-11-22

[6]
Self-Illuminating In Situ Hydrogel with Immune-Adjuvant Amplify Cerenkov Radiation-Induced Photodynamic Therapy.

Chem Biomed Imaging. 2023-12-6

[7]
Nanoscale Radiotheranostics for Cancer Treatment: From Bench to Bedside.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[8]
Added Value of Scintillating Element in Cerenkov-Induced Photodynamic Therapy.

Pharmaceuticals (Basel). 2023-1-18

[9]
Cerenkov radiation-activated probes for deep cancer theranostics: a review.

Theranostics. 2022

[10]
Combining Radiotherapy (RT) and Photodynamic Therapy (PDT): Clinical Studies on Conventional RT-PDT Approaches and Novel Nanoparticle-Based RT-PDT Approaches under Preclinical Evaluation.

ACS Biomater Sci Eng. 2022-9-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索