Suppr超能文献

基于置换的功能磁共振成像聚类分析的真实发现率。

Permutation-based true discovery proportions for functional magnetic resonance imaging cluster analysis.

机构信息

Department of Economics, Ca' Foscari University of Venice, Venice, Italy.

Biometris, Wageningen University and Research, Wageningen, The Netherlands.

出版信息

Stat Med. 2023 Jun 30;42(14):2311-2340. doi: 10.1002/sim.9725. Epub 2023 Apr 22.

Abstract

We propose a permutation-based method for testing a large collection of hypotheses simultaneously. Our method provides lower bounds for the number of true discoveries in any selected subset of hypotheses. These bounds are simultaneously valid with high confidence. The methodology is particularly useful in functional Magnetic Resonance Imaging cluster analysis, where it provides a confidence statement on the percentage of truly activated voxels within clusters of voxels, avoiding the well-known spatial specificity paradox. We offer a user-friendly tool to estimate the percentage of true discoveries for each cluster while controlling the family-wise error rate for multiple testing and taking into account that the cluster was chosen in a data-driven way. The method adapts to the spatial correlation structure that characterizes functional Magnetic Resonance Imaging data, gaining power over parametric approaches.

摘要

我们提出了一种基于排列的方法来同时测试大量假设。我们的方法为任何选定的假设子集提供了真实发现数量的下限。这些界限具有高度置信度的同时有效。该方法在功能磁共振成像聚类分析中特别有用,它为聚类中的真实激活体素的百分比提供了置信声明,避免了众所周知的空间特异性悖论。我们提供了一个用户友好的工具,可以在控制多重测试的家族错误率的同时,估计每个聚类的真实发现百分比,并考虑到该聚类是通过数据驱动的方式选择的。该方法适应了功能磁共振成像数据的空间相关结构,相对于参数方法具有更强的功效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验