Suppr超能文献

基于簇的功能磁共振成像数据分析

Cluster-based analysis of FMRI data.

作者信息

Heller Ruth, Stanley Damian, Yekutieli Daniel, Rubin Nava, Benjamini Yoav

机构信息

Department of Statistics and Operations Research, the Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

Neuroimage. 2006 Nov 1;33(2):599-608. doi: 10.1016/j.neuroimage.2006.04.233. Epub 2006 Sep 6.

Abstract

We propose a method for the statistical analysis of fMRI data that tests cluster units rather than voxel units for activation. The advantages of this analysis over previous ones are both conceptual and statistical. Recognizing that the fundamental units of interest are the spatially contiguous clusters of voxels that are activated together, we set out to approximate these cluster units from the data by a clustering algorithm especially tailored for fMRI data. Testing the cluster units has a two-fold statistical advantage over testing each voxel separately: the signal to noise ratio within the unit tested is higher, and the number of hypotheses tests compared is smaller. We suggest controlling FDR on clusters, i.e., the proportion of clusters rejected erroneously out of all clusters rejected and explain the meaning of controlling this error rate. We introduce the powerful adaptive procedure to control the FDR on clusters. We apply our cluster-based analysis (CBA) to both an event-related and a block design fMRI vision experiment and demonstrate its increased power over voxel-by-voxel analysis in these examples as well as in simulations.

摘要

我们提出了一种用于功能磁共振成像(fMRI)数据统计分析的方法,该方法针对激活情况测试的是聚类单元而非体素单元。与先前的分析方法相比,这种分析方法在概念和统计方面均具有优势。认识到感兴趣的基本单元是一起被激活的体素的空间连续聚类,我们着手通过一种专门为fMRI数据量身定制的聚类算法从数据中近似这些聚类单元。对聚类单元进行测试相对于分别测试每个体素具有两方面的统计优势:所测试单元内的信噪比更高,并且所比较的假设检验数量更少。我们建议控制聚类上的错误发现率(FDR),即所有被拒绝的聚类中错误拒绝的聚类所占比例,并解释控制此错误率的意义。我们引入了强大的自适应程序来控制聚类上的FDR。我们将基于聚类的分析(CBA)应用于一个事件相关和一个组块设计的fMRI视觉实验,并在这些示例以及模拟中证明其相对于逐体素分析具有更高的效能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验