溶液核磁共振分析金纳米粒子上季铵盐封端自组装单层中配体环境:表面曲率和配体结构的影响。
Solution NMR Analysis of Ligand Environment in Quaternary Ammonium-Terminated Self-Assembled Monolayers on Gold Nanoparticles: The Effect of Surface Curvature and Ligand Structure.
机构信息
Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.
Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States.
出版信息
J Am Chem Soc. 2019 Mar 13;141(10):4316-4327. doi: 10.1021/jacs.8b11445. Epub 2019 Feb 26.
We report a solution NMR-based analysis of (16-mercaptohexadecyl)trimethylammonium bromide (MTAB) self-assembled monolayers on colloidal gold nanospheres (AuNSs) with diameters from 1.2 to 25 nm and gold nanorods (AuNRs) with aspect ratios from 1.4 to 3.9. The chemical shift analysis of the proton signals from the solvent-exposed headgroups of bound ligands suggests that the headgroups are saturated on the ligand shell as the sizes of the nanoparticles increase beyond ∼10 nm. Quantitative NMR shows that the ligand density of MTAB-AuNSs is size-dependent. Ligand density ranges from ∼3 molecules per nm for 25 nm particles to up to 5-6 molecules per nm in ∼10 nm and smaller particles for in situ measurements of bound ligands; after I/I treatment to etch away the gold cores, ligand density ranges from ∼2 molecules per nm for 25 nm particles to up to 4-5 molecules per nm in ∼10 nm and smaller particles. T relaxation analysis shows greater hydrocarbon chain ordering and less headgroup motion as the diameter of the particles increases from 1.2 nm to ∼13 nm. Molecular dynamics simulations of 4, 6, and 8 nm (11-mercaptoundecyl)trimethylammonium bromide-capped AuNSs confirm greater hydrophobic chain packing order and saturation of charged headgroups within the same spherical ligand shell at larger nanoparticle sizes and higher ligand densities. Combining the NMR studies and MD simulations, we suggest that the headgroup packing limits the ligand density, rather than the sulfur packing on the nanoparticle surface, for ∼10 nm and larger particles. For MTAB-AuNRs, no chemical shift data nor ligand density data suggest that two populations of ligands that might correspond to side-ligands and end-ligands exist; yet T relaxation dynamics data suggest that headgroup mobility depends on aspect ratio and absolute nanoparticle dimensions.
我们报告了一种基于溶液 NMR 的分析方法,用于研究直径从 1.2nm 到 25nm 的胶体金纳米球(AuNSs)和纵横比从 1.4 到 3.9 的金纳米棒(AuNRs)上(16-巯基十六烷基)三甲基溴化铵(MTAB)自组装单层。从结合配体的溶剂暴露头基的质子信号的化学位移分析表明,随着纳米粒子尺寸超过约 10nm,头基在配体壳上饱和。定量 NMR 表明 MTAB-AuNSs 的配体密度是尺寸依赖性的。配体密度范围从约 25nm 颗粒的 3 个分子/纳米到约 10nm 和更小颗粒的 5-6 个分子/纳米,用于结合配体的原位测量;经过 I/I 处理蚀刻掉金核后,配体密度范围从约 25nm 颗粒的 2 个分子/纳米到约 10nm 和更小颗粒的 4-5 个分子/纳米。T1 弛豫分析表明,随着颗粒直径从 1.2nm 增加到约 13nm,烃链有序性增加,头基运动减少。4、6 和 8nm(十一巯基十一烷基)三甲基溴化铵封端的 AuNSs 的分子动力学模拟证实,在更大的纳米颗粒尺寸和更高的配体密度下,相同的球形配体壳内的疏水性链堆积有序性更高,带电头基更饱和。结合 NMR 研究和 MD 模拟,我们认为对于约 10nm 和更大的颗粒,头基堆积限制了配体密度,而不是纳米颗粒表面上的硫堆积限制了配体密度。对于 MTAB-AuNRs,没有化学位移数据或配体密度数据表明存在可能对应于侧配体和端配体的两种配体群体;然而,T1 弛豫动力学数据表明头基的流动性取决于纵横比和绝对纳米颗粒尺寸。