School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
Center for Reliability Science and Technologies, Chang Gung University, Taoyuan 33302, Taiwan.
ACS Nano. 2023 Jun 13;17(11):10906-10917. doi: 10.1021/acsnano.3c02749. Epub 2023 Jun 1.
Metal-organic frameworks (MOFs) show great promise for electrocatalysis owing to their tunable ligand structures. However, the poor stability of MOFs impedes their practical applications. Unlike the general pathway for engineering ligands, we report herein an innovative strategy for leveraging metal nodes to improve both the catalytic activity and the stability. Our electrolysis cell with a NiRh-MOF||NiRh-MOF configuration exhibited 10 mA cm at an ultralow cell voltage of 0.06 V in alkaline seawater (with 0.3 M NH), outperforming its counterpart benchmark Pt/C||Pt/C cell (0.12 V). Impressively, the incorporation of Rh into a MOF secured a robust stability of over 60 h even when working in the seawater electrolyte. Experimental results and theoretical calculations revealed that Rh atoms serve as the active sites for hydrogen evolution while Ni nodes are responsible for the hydrazine oxidation during the hydrazine oxidation assisted seawater splitting. This work provides a paradigm for green hydrogen generation from seawater.
金属-有机骨架(MOFs)因其配体结构可调而在电催化中具有广阔的应用前景。然而,MOFs 的稳定性差限制了它们的实际应用。与一般的配体工程途径不同,我们在此报告了一种利用金属节点来提高催化活性和稳定性的创新策略。我们的电解槽采用 NiRh-MOF||NiRh-MOF 构型,在碱性海水中(含 0.3 M NH)以超低的电池电压 0.06 V 实现了 10 mA cm 的电流密度,优于其 Pt/C||Pt/C 对照基准电池(0.12 V)。令人印象深刻的是,即使在海水电解质中工作,Rh 的掺入也能确保超过 60 小时的稳定。实验结果和理论计算表明,Rh 原子作为析氢的活性位点,而 Ni 节点负责在水合肼氧化辅助海水分解过程中发生肼氧化。这项工作为从海水中绿色制取氢气提供了范例。