Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA.
J Neurotrauma. 2024 Jan;41(1-2):147-160. doi: 10.1089/neu.2023.0122. Epub 2023 Jul 18.
Traumatic brain injury (TBI) affects 69 million people worldwide each year, and acute traumatic epidural hematoma (atEDH) is a frequent and severe consequence of TBI. The aim of the study is to use machine learning (ML) algorithms to predict in-hospital death, non-home discharges, prolonged length of stay (LOS), prolonged length of intensive care unit stay (ICU-LOS), and major complications in patients with atEDH and incorporate the resulting ML models into a user-friendly web application for use in the clinical settings. The American College of Surgeons (ACS) Trauma Quality Program (TQP) database was used to identify patients with atEDH. Four ML algorithms (XGBoost, LightGBM, CatBoost, and Random Forest) were utilized, and the best performing models were incorporated into an open-access web application to predict the outcomes of interest. The study found that the ML algorithms had high area under the receiver operating characteristic curve (AUROC) values in predicting outcomes for patients with atEDH. In particular, the algorithms had an AUROC value range of between 0.874 to 0.956 for in-hospital mortality, 0.776 to 0.798 for non-home discharges, 0.737 to 0.758 for prolonged LOS, 0.712 to 0.774 for prolonged ICU-LOS, and 0.674 to 0.733 for major complications. The following link will take users to the open-access web application designed to generate predictions for individual patients based on their characteristics: huggingface.co/spaces/MSHS-Neurosurgery-Research/TQP-atEDH. This study aimed to improve the prognostication of patients with atEDH using ML algorithms and developed a web application for easy integration in clinical practice. It found that ML algorithms can aid in risk stratification and have significant potential for predicting in-hospital outcomes. Results demonstrated excellent performance for predicting in-hospital death and fair performance for non-home discharges, prolonged LOS and ICU-LOS, and poor performance for major complications.
创伤性脑损伤 (TBI) 每年影响全球 6900 万人,急性创伤性硬脑膜外血肿 (atEDH) 是 TBI 的常见且严重的后果。本研究旨在使用机器学习 (ML) 算法预测 atEDH 患者的院内死亡、非家庭出院、住院时间延长 (LOS)、重症监护病房 LOS 延长和主要并发症,并将由此产生的 ML 模型纳入一个用户友好的网络应用程序,以便在临床环境中使用。研究使用美国外科医师学会 (ACS) 创伤质量计划 (TQP) 数据库来识别 atEDH 患者。使用了四种 ML 算法 (XGBoost、LightGBM、CatBoost 和随机森林),并将表现最佳的模型纳入一个开放访问的网络应用程序,以预测感兴趣的结果。研究发现,ML 算法在预测 atEDH 患者的结果方面具有较高的受试者工作特征曲线下面积 (AUROC) 值。特别是,这些算法在预测院内死亡率方面的 AUROC 值范围为 0.874 至 0.956,非家庭出院率为 0.776 至 0.798,住院时间延长率为 0.737 至 0.758,重症监护病房 LOS 延长率为 0.712 至 0.774,主要并发症发生率为 0.674 至 0.733。以下链接将引导用户访问设计用于根据患者特征为个体患者生成预测的开放访问网络应用程序:huggingface.co/spaces/MSHS-Neurosurgery-Research/TQP-atEDH。本研究旨在使用 ML 算法改善 atEDH 患者的预后,并开发了一个网络应用程序,以便于在临床实践中集成。研究发现,ML 算法可以帮助进行风险分层,并且具有预测院内结局的巨大潜力。结果表明,对于预测院内死亡具有出色的性能,对于非家庭出院、住院时间延长和 ICU-LOS 具有良好的性能,对于主要并发症具有较差的性能。