Suppr超能文献

基于机器学习模型的个体化预测:颅内脑膜瘤切除术后的院内预后评估。

Personalized Prognosis with Machine Learning Models for Predicting In-Hospital Outcomes Following Intracranial Meningioma Resections.

机构信息

Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA.

School of Medicine, SUNY Downstate Health Sciences University, New York, New York, USA.

出版信息

World Neurosurg. 2024 Feb;182:e210-e230. doi: 10.1016/j.wneu.2023.11.081. Epub 2023 Nov 24.

Abstract

BACKGROUND

Meningiomas display diverse biological traits and clinical behaviors, complicating patient outcome prediction. This heterogeneity, along with varying prognoses, underscores the need for a precise, personalized evaluation of postoperative outcomes.

METHODS

Data from the American College of Surgeons National Surgical Quality Improvement Program database identified patients who underwent intracranial meningioma resections from 2014 to 2020. We focused on 5 outcomes: prolonged LOS, nonhome discharges, 30-day readmissions, unplanned reoperations, and major complications. Six machine learning algorithms, including TabPFN, TabNet, XGBoost, LightGBM, Random Forest, and Logistic Regression, coupled with the Optuna optimization library for hyperparameter tuning, were tested. Models with the highest area under the receiver operating characteristic (AUROC) values were included in the web application. SHapley Additive exPlanations were used to evaluate the importance of predictor variables.

RESULTS

Our analysis included 7000 patients. Of these patients, 1658 (23.7%) had prolonged LOS, 1266 (18.1%) had nonhome discharges, 573 (8.2%) had 30-day readmission, 253 (3.6%) had unplanned reoperation, and 888 (12.7%) had major complications. Performance evaluation indicated that the top-performing models for each outcome were the models built with LightGBM and Random Forest algorithms. The LightGBM models yielded AUROCs of 0.842 and 0.846 in predicting prolonged LOS and nonhome discharges, respectively. The Random Forest models yielded AUROCs of 0.717, 0.76, and 0.805 in predicting 30-day readmissions, unplanned reoperations, and major complications, respectively.

CONCLUSIONS

The study successfully demonstrated the potential of machine learning models in predicting short-term adverse postoperative outcomes after meningioma resections. This approach represents a significant step forward in personalizing the information provided to meningioma patients.

摘要

背景

脑膜瘤表现出多种生物学特征和临床行为,使患者的预后预测变得复杂。这种异质性以及不同的预后强调了需要对术后结果进行精确、个性化的评估。

方法

美国外科医师学会国家手术质量改进计划数据库中的数据确定了 2014 年至 2020 年期间接受颅内脑膜瘤切除术的患者。我们关注了 5 个结果:延长住院时间、非家庭出院、30 天再入院、计划外再次手术和主要并发症。我们测试了包括 TabPFN、TabNet、XGBoost、LightGBM、随机森林和逻辑回归在内的 6 种机器学习算法,以及 Optuna 优化库进行超参数调整。纳入了具有最高受试者工作特征曲线(AUROC)值的模型的网络应用程序。使用 Shapley 加法解释来评估预测变量的重要性。

结果

我们的分析包括 7000 名患者。其中,1658 名(23.7%)患者延长了住院时间,1266 名(18.1%)患者非家庭出院,573 名(8.2%)患者 30 天再入院,253 名(3.6%)患者计划外再次手术,888 名(12.7%)患者发生主要并发症。性能评估表明,每种结果表现最好的模型是使用 LightGBM 和随机森林算法构建的模型。LightGBM 模型在预测延长住院时间和非家庭出院方面的 AUROC 分别为 0.842 和 0.846。随机森林模型在预测 30 天再入院、计划外再次手术和主要并发症方面的 AUROC 分别为 0.717、0.76 和 0.805。

结论

该研究成功地展示了机器学习模型在预测脑膜瘤切除术后短期不良术后结果方面的潜力。这种方法代表了向脑膜瘤患者提供个性化信息的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验