Suppr超能文献

在解决勘探地球物理问题的深度神经网络中感知先验约束。

Sensing prior constraints in deep neural networks for solving exploration geophysical problems.

机构信息

School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026 China.

Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei 230026, China.

出版信息

Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2219573120. doi: 10.1073/pnas.2219573120. Epub 2023 Jun 1.

Abstract

One of the key objectives in geophysics is to characterize the subsurface through the process of analyzing and interpreting geophysical field data that are typically acquired at the surface. Data-driven deep learning methods have enormous potential for accelerating and simplifying the process but also face many challenges, including poor generalizability, weak interpretability, and physical inconsistency. We present three strategies for imposing domain knowledge constraints on deep neural networks (DNNs) to help address these challenges. The first strategy is to integrate constraints into data by generating synthetic training datasets through geological and geophysical forward modeling and properly encoding prior knowledge as part of the input fed into the DNNs. The second strategy is to design nontrainable custom layers of physical operators and preconditioners in the DNN architecture to modify or shape feature maps calculated within the network to make them consistent with the prior knowledge. The final strategy is to implement prior geological information and geophysical laws as regularization terms in loss functions for training the DNNs. We discuss the implementation of these strategies in detail and demonstrate their effectiveness by applying them to geophysical data processing, imaging, interpretation, and subsurface model building.

摘要

地球物理学的主要目标之一是通过分析和解释通常在地表获取的地球物理场数据来描述地下特征。基于数据的深度学习方法在加速和简化这一过程方面具有巨大的潜力,但也面临着许多挑战,包括泛化能力差、可解释性弱和物理一致性差。我们提出了三种在深度神经网络 (DNN) 上施加领域知识约束的策略,以帮助解决这些挑战。第一种策略是通过地质和地球物理正演建模生成合成训练数据集,并将先验知识作为输入的一部分正确编码,从而将约束集成到数据中。第二种策略是在 DNN 架构中设计不可训练的自定义物理算子和预条件器层,以修改或塑造网络内计算的特征图,使其与先验知识一致。最后一种策略是将先验地质信息和地球物理定律作为训练 DNN 的损失函数中的正则化项。我们详细讨论了这些策略的实现,并通过将其应用于地球物理数据处理、成像、解释和地下模型建立来证明其有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d35e/10265955/822ba8a9a2ac/pnas.2219573120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验