Suppr超能文献

通过从 DFT 进行 Δ-机器学习来计算 CCSD(T)-质量 NMR 化学位移。

Computation of CCSD(T)-Quality NMR Chemical Shifts via Δ-Machine Learning from DFT.

机构信息

Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.

出版信息

J Chem Theory Comput. 2023 Jun 27;19(12):3601-3615. doi: 10.1021/acs.jctc.3c00165. Epub 2023 Jun 1.

Abstract

NMR spectroscopy undoubtedly plays a central role in determining molecular structures across different chemical disciplines, and the accurate computational prediction of NMR parameters is highly desirable. In this work, a new Δ-machine learning approach is presented to correct DFT-computed NMR chemical shifts using input features from the calculation and in addition highly accurate reference data at the CCSD(T)/pcSseg-2 level of theory with a basis set extrapolation scheme. The model is trained on a data set containing 1000 optimized and geometrically distorted structures of small organic molecules comprising most elements of the first three periods and containing data for 7090 H and 4230 C NMR chemical shifts. Applied to the PBE0/pcSseg-2 method, the mean absolute deviation (MAD) on the internal NMR shift test set is reduced by 81% for H and 92% for C at virtually no additional computational cost. For 12 different DFT functional and basis set combinations, the MAD of the ML-corrected NMR shifts ranges from 0.021 to 0.039 ppm (H) and from 0.38 to 1.07 ppm (C). Importantly, the new method consistently outperforms the simple and widely used linear regression correction technique. This behavior is reproduced on three different external benchmark sets, confirming the generality and robustness of the correction scheme, which can easily be applied in DFT-based spectral simulations.

摘要

NMR 光谱无疑在确定不同化学领域的分子结构方面起着核心作用,因此非常希望能够准确地计算预测 NMR 参数。在这项工作中,提出了一种新的 Δ-机器学习方法,该方法使用计算输入特征以及理论上 CCSD(T)/pcSseg-2 水平的高精度参考数据(具有基组外推方案)来校正 DFT 计算的 NMR 化学位移。该模型在包含 1000 个优化和几何扭曲的小分子结构的数据集上进行了训练,这些小分子结构包含了前三个周期的大多数元素,并且包含了 7090 个 H 和 4230 个 C NMR 化学位移的数据。对于 PBE0/pcSseg-2 方法,内部 NMR 位移测试集的平均绝对偏差(MAD)在 H 上降低了 81%,在 C 上降低了 92%,而几乎没有增加计算成本。对于 12 种不同的 DFT 函数和基组组合,ML 校正的 NMR 位移的 MAD 在 0.021 到 0.039 ppm(H)之间,在 0.38 到 1.07 ppm(C)之间。重要的是,新方法始终优于简单且广泛使用的线性回归校正技术。这种行为在三个不同的外部基准集上得到了重现,证实了校正方案的通用性和稳健性,该方案可以很容易地应用于基于 DFT 的光谱模拟中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验