Department of Molecular and Cellular Biology and Integrative Genetics and Genomics Graduate Program, University of California, Davis, United States.
Department of Molecular and Cellular Biology and Integrative Genetics and Genomics Graduate Program, University of California, Davis, United States.
Dev Biol. 2023 Aug;500:40-54. doi: 10.1016/j.ydbio.2023.05.005. Epub 2023 May 30.
Asymmetric cell divisions, where cells divide with respect to a polarized axis and give rise to daughter cells with different fates, are critically important for development. In many such divisions, the conserved PAR polarity proteins accumulate in distinct cortical domains in response to a symmetry breaking cue. The one-cell C. elegans embryo is a paradigm for understanding mechanisms of PAR polarization, but much less is known about polarity in subsequent divisions. Here, we investigate the polarization of the P cell of the two-cell embryo. A posterior PAR-2 domain forms in the first 4 min, and polarization becomes stronger over time. Initial polarization depends on the PAR-1 and PKC-3 kinases, and the downstream polarity regulators MEX-5 and PLK-1. However, par-1 and plk-1 mutants exhibit delayed polarization. This late polarization correlates with the time of centrosome maturation and actomyosin flow, and loss of centrosome maturation or myosin in par-1 mutant embryos causes an even stronger polarity phenotype. Based on these and other results, we propose that PAR polarity in the P cell is generated by at least two redundant mechanisms: There is a novel early pathway dependent on PAR-1, PKC-3 and cytoplasmic polarity, and a late pathway that resembles symmetry breaking in the one-cell embryo and requires PKC-3, centrosome associated AIR-1 and myosin flow.
不对称细胞分裂是指细胞相对于极化轴进行分裂,并产生具有不同命运的子细胞,这对发育至关重要。在许多这样的分裂中,保守的 PAR 极性蛋白会在响应对称破缺信号时在不同的皮质域中积累。单细胞 C. elegans 胚胎是理解 PAR 极化机制的典范,但对于随后的分裂中的极性知之甚少。在这里,我们研究了两细胞胚胎的 P 细胞的极化。在后 PAR-2 域在前 4 分钟内形成,并且极化随着时间的推移而增强。最初的极化依赖于 PAR-1 和 PKC-3 激酶,以及下游的极性调节剂 MEX-5 和 PLK-1。然而,par-1 和 plk-1 突变体表现出延迟的极化。这种晚期极化与中心体成熟和肌动球蛋白流的时间相关,并且在 par-1 突变体胚胎中失去中心体成熟或肌球蛋白会导致更强的极性表型。基于这些和其他结果,我们提出 P 细胞中的 PAR 极性至少由两种冗余机制产生:有一种新的早期途径依赖于 PAR-1、PKC-3 和细胞质极性,以及一种类似于单细胞胚胎中对称破缺的晚期途径,需要 PKC-3、中心体相关的 AIR-1 和肌球蛋白流。