Department of Materials, University of Oxford, Oxford, UK.
Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy.
Nat Chem. 2023 Jul;15(7):1022-1029. doi: 10.1038/s41557-023-01203-3. Epub 2023 Jun 1.
Although Li-air rechargeable batteries offer higher energy densities than lithium-ion batteries, the insulating LiO formed during discharge hinders rapid, efficient re-charging. Redox mediators are used to facilitate LiO oxidation; however, fast kinetics at a low charging voltage are necessary for practical applications and are yet to be achieved. We investigate the mechanism of LiO oxidation by redox mediators. The rate-limiting step is the outer-sphere one-electron oxidation of LiO to LiO, which follows Marcus theory. The second step is dominated by LiO disproportionation, forming mostly triplet-state O. The yield of singlet-state O depends on the redox potential of the mediator in a way that does not correlate with electrolyte degradation, in contrast to earlier views. Our mechanistic understanding explains why current low-voltage mediators (<+3.3 V) fail to deliver high rates (the maximum rate is at +3.74 V) and suggests important mediator design strategies to deliver sufficiently high rates for fast charging at potentials closer to the thermodynamic potential of LiO oxidation (+2.96 V).
虽然锂空气可充电电池比锂离子电池具有更高的能量密度,但在放电过程中形成的绝缘 LiO 会阻碍快速、高效的再充电。氧化还原介体用于促进 LiO 的氧化;然而,对于实际应用来说,在低充电电压下实现快速动力学是必要的,而这尚未实现。我们研究了氧化还原介体促进 LiO 氧化的机制。限速步骤是 LiO 的外球单电子氧化为 LiO,遵循马库斯理论。第二步主要由 LiO 的歧化反应主导,形成大多数三重态 O。单重态 O 的产率取决于介体的氧化还原电位,与电解质降解无关,这与早期的观点不同。我们的机理理解解释了为什么当前的低电压介体(<+3.3V)无法提供高电流(最大电流在+3.74V),并提出了重要的介体设计策略,以在更接近 LiO 氧化热力学势(+2.96V)的电势下提供足够高的电流以实现快速充电。