Suppr超能文献

为什么用目前低电压介体给锂-空气电池充电很慢,而且单线态氧并不能解释其降解原因。

Why charging Li-air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation.

机构信息

Department of Materials, University of Oxford, Oxford, UK.

Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy.

出版信息

Nat Chem. 2023 Jul;15(7):1022-1029. doi: 10.1038/s41557-023-01203-3. Epub 2023 Jun 1.

Abstract

Although Li-air rechargeable batteries offer higher energy densities than lithium-ion batteries, the insulating LiO formed during discharge hinders rapid, efficient re-charging. Redox mediators are used to facilitate LiO oxidation; however, fast kinetics at a low charging voltage are necessary for practical applications and are yet to be achieved. We investigate the mechanism of LiO oxidation by redox mediators. The rate-limiting step is the outer-sphere one-electron oxidation of LiO to LiO, which follows Marcus theory. The second step is dominated by LiO disproportionation, forming mostly triplet-state O. The yield of singlet-state O depends on the redox potential of the mediator in a way that does not correlate with electrolyte degradation, in contrast to earlier views. Our mechanistic understanding explains why current low-voltage mediators (<+3.3 V) fail to deliver high rates (the maximum rate is at +3.74 V) and suggests important mediator design strategies to deliver sufficiently high rates for fast charging at potentials closer to the thermodynamic potential of LiO oxidation (+2.96 V).

摘要

虽然锂空气可充电电池比锂离子电池具有更高的能量密度,但在放电过程中形成的绝缘 LiO 会阻碍快速、高效的再充电。氧化还原介体用于促进 LiO 的氧化;然而,对于实际应用来说,在低充电电压下实现快速动力学是必要的,而这尚未实现。我们研究了氧化还原介体促进 LiO 氧化的机制。限速步骤是 LiO 的外球单电子氧化为 LiO,遵循马库斯理论。第二步主要由 LiO 的歧化反应主导,形成大多数三重态 O。单重态 O 的产率取决于介体的氧化还原电位,与电解质降解无关,这与早期的观点不同。我们的机理理解解释了为什么当前的低电压介体(<+3.3V)无法提供高电流(最大电流在+3.74V),并提出了重要的介体设计策略,以在更接近 LiO 氧化热力学势(+2.96V)的电势下提供足够高的电流以实现快速充电。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验