文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于动态对比增强 MRI 的直方图和纹理分析对三阴性乳腺癌和雄激素受体表达的鉴定。

Identification of triple-negative breast cancer and androgen receptor expression based on histogram and texture analysis of dynamic contrast-enhanced MRI.

机构信息

Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.

GE healthcare (China), Beijing, 100176, China.

出版信息

BMC Med Imaging. 2023 Jun 1;23(1):70. doi: 10.1186/s12880-023-01022-5.


DOI:10.1186/s12880-023-01022-5
PMID:37264313
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10236691/
Abstract

BACKGROUND: Triple-negative breast cancer (TNBC) is highly malignant and has a poor prognosis due to the lack of effective therapeutic targets. Androgen receptor (AR) has been investigated as a possible therapeutic target. This study quantitatively assessed intratumor heterogeneity by histogram analysis of pharmacokinetic parameters and texture analysis on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to discriminate TNBC from non-triple-negative breast cancer (non-TNBC) and to identify AR expression in TNBC. METHODS: This retrospective study included 99 patients with histopathologically proven breast cancer (TNBC: 36, non-TNBC: 63) who underwent breast DCE-MRI before surgery. The pharmacokinetic parameters of DCE-MRI (K, K and V) and their corresponding texture parameters were calculated. The independent t-test, or Mann-Whitney U-test was used to compare quantitative parameters between TNBC and non-TNBC groups, and AR-positive (AR+) and AR-negative (AR-) TNBC groups. The parameters with significant difference between two groups were further involved in logistic regression analysis to build a prediction model for TNBC. The ROC analysis was conducted on each independent parameter and the TNBC predicting model for evaluating the discrimination performance. The area under the ROC curve (AUC), sensitivity and specificity were derived. RESULTS: The binary logistic regression analysis revealed that K (p = 0.032) and V (p = 0.005) were significantly higher in TNBC than in non-TNBC. The AUC of the combined model for identifying TNBC was 0.735 (p < 0.001) with a cut-off value of 0.268, and its sensitivity and specificity were 88.89% and 52.38%, respectively. The value of K (p = 0.049), K (p = 0.049), and V (p = 0.008) were higher in AR + TNBC group than in AR-TNBC group. CONCLUSION: Histogram and texture analysis of breast lesions on DCE-MRI showed potential to identify TNBC, and the specific features can be possible predictors of AR expression, enhancing the ability to individualize the treatment of patients with TNBC.

摘要

背景:三阴性乳腺癌(TNBC)恶性程度高,预后差,缺乏有效的治疗靶点。雄激素受体(AR)已被研究为一种可能的治疗靶点。本研究通过直方图分析药代动力学参数和动态对比增强磁共振成像(DCE-MRI)的纹理分析来定量评估肿瘤内异质性,以区分 TNBC 与非三阴性乳腺癌(non-TNBC),并确定 TNBC 中的 AR 表达。

方法:本回顾性研究纳入了 99 例经病理证实的乳腺癌患者(TNBC:36 例,non-TNBC:63 例),这些患者在术前均接受了乳腺 DCE-MRI 检查。计算 DCE-MRI 的药代动力学参数(K、K 和 V)及其相应的纹理参数。采用独立样本 t 检验或 Mann-Whitney U 检验比较 TNBC 组与 non-TNBC 组、AR 阳性(AR+)和 AR 阴性(AR-)TNBC 组之间的定量参数。将两组间有显著差异的参数进一步纳入逻辑回归分析,建立 TNBC 预测模型。对每个独立参数和 TNBC 预测模型进行 ROC 分析,以评估其鉴别性能。得出 ROC 曲线下面积(AUC)、敏感性和特异性。

结果:二元逻辑回归分析显示,TNBC 组的 K(p=0.032)和 V(p=0.005)显著高于 non-TNBC 组。识别 TNBC 的联合模型的 AUC 为 0.735(p<0.001),截断值为 0.268,其敏感性和特异性分别为 88.89%和 52.38%。AR+TNBC 组的 K(p=0.049)、K(p=0.049)和 V(p=0.008)值均高于 AR-TNBC 组。

结论:DCE-MRI 上乳腺病变的直方图和纹理分析显示出识别 TNBC 的潜力,其特定特征可能是 AR 表达的潜在预测指标,增强了对 TNBC 患者个体化治疗的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/debf/10236691/5e763562da47/12880_2023_1022_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/debf/10236691/96c0e72d63b0/12880_2023_1022_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/debf/10236691/aeb1be824e4b/12880_2023_1022_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/debf/10236691/5e763562da47/12880_2023_1022_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/debf/10236691/96c0e72d63b0/12880_2023_1022_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/debf/10236691/aeb1be824e4b/12880_2023_1022_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/debf/10236691/5e763562da47/12880_2023_1022_Fig3_HTML.jpg

相似文献

[1]
Identification of triple-negative breast cancer and androgen receptor expression based on histogram and texture analysis of dynamic contrast-enhanced MRI.

BMC Med Imaging. 2023-6-1

[2]
Whole-lesion histogram and texture analyses of breast lesions on inline quantitative DCE mapping with CAIPIRINHA-Dixon-TWIST-VIBE.

Eur Radiol. 2019-8-1

[3]
High-temporal resolution DCE-MRI improves assessment of intra- and peri-breast lesions categorized as BI-RADS 4.

BMC Med Imaging. 2023-4-19

[4]
Differentiation between Luminal A and B Molecular Subtypes of Breast Cancer Using Pharmacokinetic Quantitative Parameters with Histogram and Texture Features on Preoperative Dynamic Contrast-Enhanced Magnetic Resonance Imaging.

Acad Radiol. 2020-3

[5]
Application of whole-lesion histogram analysis of pharmacokinetic parameters in dynamic contrast-enhanced MRI of breast lesions with the CAIPIRINHA-Dixon-TWIST-VIBE technique.

J Magn Reson Imaging. 2017-6-3

[6]
Comparison of diffusion kurtosis imaging and dynamic contrast enhanced MRI in prediction of prognostic factors and molecular subtypes in patients with breast cancer.

Eur J Radiol. 2022-9

[7]
A multiparametric approach to predict triple-negative breast cancer including parameters derived from ultrafast dynamic contrast-enhanced MRI.

Eur Radiol. 2023-11

[8]
Evaluating the Relationship Between Dynamic Contrast-Enhanced MRI (DCE-MRI) Parameters and Pathological Characteristics in Breast Cancer.

J Magn Reson Imaging. 2020-11

[9]
Development and validation of a nomogram based on pretreatment dynamic contrast-enhanced MRI for the prediction of pathologic response after neoadjuvant chemotherapy for triple-negative breast cancer.

Eur Radiol. 2022-3

[10]
Quantification of breast tumor heterogeneity for ER status, HER2 status, and TN molecular subtype evaluation on DCE-MRI.

Magn Reson Imaging. 2016-7

引用本文的文献

[1]
Advancements and challenges in triple-negative breast cancer: a comprehensive review of therapeutic and diagnostic strategies.

Front Oncol. 2024-5-28

本文引用的文献

[1]
Intramammary edema of invasive breast cancers on MRI T-weighted fat suppression sequence: Correlation with molecular subtypes and clinical-pathologic prognostic factors.

Clin Imaging. 2022-3

[2]
Quantitative Multiparametric MRI as an Imaging Biomarker for the Prediction of Breast Cancer Receptor Status and Molecular Subtypes.

Front Oncol. 2021-9-16

[3]
Characterization of breast cancer subtypes based on quantitative assessment of intratumoral heterogeneity using dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging.

Eur Radiol. 2022-2

[4]
Comparison of clinical and magnetic resonance imaging findings of triple-negative breast cancer with non-triple-negative tumours.

Pol J Radiol. 2021-5-7

[5]
Dynamic Contrast Enhanced MRI and Intravoxel Incoherent Motion to Identify Molecular Subtypes of Breast Cancer with Different Vascular Normalization Gene Expression.

Korean J Radiol. 2021-7

[6]
Androgen receptor expression in breast cancer: Implications on prognosis and treatment, a brief review.

Mol Cell Endocrinol. 2021-7-1

[7]
Androgen receptor expression and outcome of neoadjuvant chemotherapy in triple-negative breast cancer.

Eur Rev Med Pharmacol Sci. 2021-2

[8]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[9]
Whole-Lesion Histogram Analysis of the Apparent Diffusion Coefficient as a Quantitative Imaging Biomarker for Assessing the Level of Tumor-Infiltrating Lymphocytes: Value in Molecular Subtypes of Breast Cancer.

Front Oncol. 2021-1-8

[10]
Preliminary study on identification of estrogen receptor-positive breast cancer subtypes based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) texture analysis.

Gland Surg. 2020-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索