Division of Paediatric Emergency Medicine, Department of Women, Child and Adolescent, Geneva University Hospitals, 47 Avenue de la Roseraie, 1211, Geneva 14, Switzerland.
Faculty of Medicine, University of Geneva, Geneva, Switzerland.
BMC Pulm Med. 2023 Jun 2;23(1):191. doi: 10.1186/s12890-022-02255-w.
Interstitial lung diseases (ILD), such as idiopathic pulmonary fibrosis (IPF) and non-specific interstitial pneumonia (NSIP), and chronic obstructive pulmonary disease (COPD) are severe, progressive pulmonary disorders with a poor prognosis. Prompt and accurate diagnosis is important to enable patients to receive appropriate care at the earliest possible stage to delay disease progression and prolong survival. Artificial intelligence-assisted lung auscultation and ultrasound (LUS) could constitute an alternative to conventional, subjective, operator-related methods for the accurate and earlier diagnosis of these diseases. This protocol describes the standardised collection of digitally-acquired lung sounds and LUS images of adult outpatients with IPF, NSIP or COPD and a deep learning diagnostic and severity-stratification approach.
A total of 120 consecutive patients (≥ 18 years) meeting international criteria for IPF, NSIP or COPD and 40 age-matched controls will be recruited in a Swiss pulmonology outpatient clinic, starting from August 2022. At inclusion, demographic and clinical data will be collected. Lung auscultation will be recorded with a digital stethoscope at 10 thoracic sites in each patient and LUS images using a standard point-of-care device will be acquired at the same sites. A deep learning algorithm (DeepBreath) using convolutional neural networks, long short-term memory models, and transformer architectures will be trained on these audio recordings and LUS images to derive an automated diagnostic tool. The primary outcome is the diagnosis of ILD versus control subjects or COPD. Secondary outcomes are the clinical, functional and radiological characteristics of IPF, NSIP and COPD diagnosis. Quality of life will be measured with dedicated questionnaires. Based on previous work to distinguish normal and pathological lung sounds, we estimate to achieve convergence with an area under the receiver operating characteristic curve of > 80% using 40 patients in each category, yielding a sample size calculation of 80 ILD (40 IPF, 40 NSIP), 40 COPD, and 40 controls.
This approach has a broad potential to better guide care management by exploring the synergistic value of several point-of-care-tests for the automated detection and differential diagnosis of ILD and COPD and to estimate severity. Trial registration Registration: August 8, 2022.
gov Identifier: NCT05318599.
间质性肺疾病(ILD),如特发性肺纤维化(IPF)和非特异性间质性肺炎(NSIP)以及慢性阻塞性肺疾病(COPD),是具有不良预后的严重进行性肺部疾病。及时准确的诊断对于使患者能够在最早阶段接受适当的护理以延缓疾病进展和延长生存时间非常重要。人工智能辅助听诊和超声(LUS)可以替代传统的、主观的、与操作者相关的方法,用于准确和更早地诊断这些疾病。本方案描述了对符合特发性肺纤维化、非特异性间质性肺炎或慢性阻塞性肺疾病国际标准的成年门诊患者进行数字化采集的肺音和 LUS 图像的标准采集,并描述了一种深度学习诊断和严重程度分层方法。
从 2022 年 8 月开始,在瑞士肺病门诊共招募 120 名符合 IPF、NSIP 或 COPD 国际标准的连续患者(≥18 岁)和 40 名年龄匹配的对照者。纳入时,将收集人口统计学和临床数据。将使用数字听诊器在每个患者的 10 个胸部部位记录听诊,使用标准的即时护理设备在同一部位采集 LUS 图像。使用卷积神经网络、长短时记忆模型和变压器结构的深度学习算法(DeepBreath)对这些音频记录和 LUS 图像进行训练,以获得自动化诊断工具。主要结局是ILD 与对照者或 COPD 的诊断。次要结局是 IPF、NSIP 和 COPD 诊断的临床、功能和影像学特征。将使用专门的问卷测量生活质量。基于先前区分正常和病理性肺音的工作,我们估计使用每个类别中的 40 个患者可达到大于 80%的接收器工作特征曲线下面积的收敛,这使得样本量计算为 80 例 ILD(40 例 IPF、40 例 NSIP)、40 例 COPD 和 40 例对照。
该方法具有广泛的潜力,可以通过探索几种即时护理测试的协同价值来更好地指导护理管理,用于自动检测和鉴别诊断 ILD 和 COPD,并估计严重程度。
2022 年 8 月 8 日。
gov 标识符:NCT05318599。