Suppr超能文献

一种能够从其他慢性间质性肺疾病中鉴别诊断特发性肺纤维化的可理解的机器学习工具。

A comprehensible machine learning tool to differentially diagnose idiopathic pulmonary fibrosis from other chronic interstitial lung diseases.

机构信息

Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Image Processing Research Team, RIKEN Center for Advanced Photonics, Wako, Japan.

出版信息

Respirology. 2022 Sep;27(9):739-746. doi: 10.1111/resp.14310. Epub 2022 Jun 13.

Abstract

BACKGROUND AND OBJECTIVE

Idiopathic pulmonary fibrosis (IPF) has poor prognosis, and the multidisciplinary diagnostic agreement is low. Moreover, surgical lung biopsies pose comorbidity risks. Therefore, using data from non-invasive tests usually employed to assess interstitial lung diseases (ILDs), we aimed to develop an automated algorithm combining deep learning and machine learning that would be capable of detecting and differentiating IPF from other ILDs.

METHODS

We retrospectively analysed consecutive patients presenting with ILD between April 2007 and July 2017. Deep learning was used for semantic image segmentation of HRCT based on the corresponding labelled images. A diagnostic algorithm was then trained using the semantic results and non-invasive findings. Diagnostic accuracy was assessed using five-fold cross-validation.

RESULTS

In total, 646,800 HRCT images and the corresponding labelled images were acquired from 1068 patients with ILD, of whom 42.7% had IPF. The average segmentation accuracy was 96.1%. The machine learning algorithm had an average diagnostic accuracy of 83.6%, with high sensitivity, specificity and kappa coefficient values (80.7%, 85.8% and 0.665, respectively). Using Cox hazard analysis, IPF diagnosed using this algorithm was a significant prognostic factor (hazard ratio, 2.593; 95% CI, 2.069-3.250; p < 0.001). Diagnostic accuracy was good even in patients with usual interstitial pneumonia patterns on HRCT and those with surgical lung biopsies.

CONCLUSION

Using data from non-invasive examinations, the combined deep learning and machine learning algorithm accurately, easily and quickly diagnosed IPF in a population with various ILDs.

摘要

背景与目的

特发性肺纤维化(IPF)预后较差,多学科诊断共识度低。此外,外科肺活检存在合并症风险。因此,我们旨在使用通常用于评估间质性肺疾病(ILD)的非侵入性检查数据,开发一种结合深度学习和机器学习的自动化算法,以能够检测和区分 IPF 与其他ILD。

方法

我们回顾性分析了 2007 年 4 月至 2017 年 7 月期间连续出现ILD 的患者。深度学习用于基于相应标记图像对 HRCT 进行语义图像分割。然后,使用语义结果和非侵入性发现来训练诊断算法。使用五重交叉验证评估诊断准确性。

结果

共从 1068 例ILD 患者中获取了 646800 张 HRCT 图像和相应的标记图像,其中 42.7%的患者为 IPF。平均分割准确率为 96.1%。机器学习算法的平均诊断准确率为 83.6%,具有较高的敏感性、特异性和kappa 系数值(分别为 80.7%、85.8%和 0.665)。使用 Cox 风险分析,使用该算法诊断的 IPF 是显著的预后因素(风险比,2.593;95%CI,2.069-3.250;p<0.001)。即使在 HRCT 上具有常见间质性肺炎模式和接受外科肺活检的患者中,诊断准确性也很好。

结论

使用非侵入性检查数据,该结合深度学习和机器学习的算法可在具有各种ILD 的人群中准确、简便、快速地诊断 IPF。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验