文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在含有黄芪多糖的 3D 打印支架上接种 VEGF 基因修饰的 iPS-HFSCs 修复皮肤缺损的可行性。

Feasibility of repairing skin defects by VEGF gene-modified iPS-HFSCs seeded on a 3D printed scaffold containing astragalus polysaccharide.

机构信息

Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.

Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China.

出版信息

J Cell Mol Med. 2023 Aug;27(15):2136-2149. doi: 10.1111/jcmm.17800. Epub 2023 Jun 1.


DOI:10.1111/jcmm.17800
PMID:37264501
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10399531/
Abstract

The preparation of biodegradable scaffolds loaded with cells and cytokine is a feature of tissue-engineered skin. IPSCs-based tissue-engineered skin treatment for wound repair is worth exploring. Healthy human skin fibroblasts were collected and reprogrammed into iPSCs. After gene modification and induction, CK19 /Integrinβ1 /CD200 VEGF gene-modified iPS-HFSCs were obtained and identified by a combination of immunofluorescence and RT-qPCR. Astragalus polysaccharide-containing 3D printed degradable scaffolds were prepared and co-cultured with VEGF gene-modified iPS-HFSCs , and the biocompatibility and spatial structure of the tissue-engineered skin was analysed by cell counting kit-8 (CCK8) assay and scanning electron microscopy. Finally, the tissue-engineered skin was transplanted onto the dorsal trauma of nude mice, and the effect of tissue-engineered skin on the regenerative repair of total skin defects was evaluated by a combination of histology, immunohistochemistry, immunofluorescence, RT-qPCR, and in vivo three-dimensional reconstruction under two-photon microscopy. CK19 /Integrinβ1 /CD200 VEGF gene-modified iPS-HFSCs , close to the morphology and phenotype of human-derived hair follicle stem cells, were obtained. The surface of the prepared 3D printed degradable scaffold containing 200 μg/mL astragalus polysaccharide was enriched with honeycomb-like meshwork, which was more conducive to the proliferation of the resulting cells. After tissue-engineered skin transplantation, combined assays showed that it promoted early vascularization, collagen and hair follicle regeneration and accelerated wound repair. VEGF gene-modified iPS-HFSCs compounded with 3D printed degradable scaffolds containing 200 μg/mL astragalus polysaccharide can directly and indirectly participate in vascular, collagen, and hair follicle regeneration in the skin, achieving more complete structural and functional skin regenerative repair.

摘要

负载细胞和细胞因子的可生物降解支架的制备是组织工程皮肤的一个特征。基于 IPSC 的组织工程皮肤治疗用于伤口修复值得探索。收集健康人皮肤成纤维细胞并将其重编程为 iPSCs。经过基因修饰和诱导,获得 CK19/Integrinβ1/CD200 VEGF 基因修饰的 iPS-HFSCs,并通过免疫荧光和 RT-qPCR 联合鉴定。制备含黄芪多糖的 3D 打印可降解支架,并与 VEGF 基因修饰的 iPS-HFSCs 共培养,通过细胞计数试剂盒-8(CCK8)测定和扫描电子显微镜分析组织工程皮肤的生物相容性和空间结构。最后,将组织工程皮肤移植到裸鼠背部创伤处,通过组织学、免疫组织化学、免疫荧光、RT-qPCR 以及双光子显微镜下的体内三维重建相结合,评估组织工程皮肤对全层皮肤缺损再生修复的作用。获得了接近人源性毛囊干细胞形态和表型的 CK19/Integrinβ1/CD200 VEGF 基因修饰的 iPS-HFSCs。含有 200μg/mL 黄芪多糖的制备的 3D 打印可降解支架的表面富含蜂窝状网格,更有利于细胞的增殖。组织工程皮肤移植后,联合检测表明其促进了早期血管化、胶原和毛囊再生,加速了伤口修复。含 200μg/mL 黄芪多糖的 3D 打印可降解支架复合 VEGF 基因修饰的 iPS-HFSCs 可直接和间接参与皮肤中的血管、胶原和毛囊再生,实现更完整的结构和功能皮肤再生修复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/814e1c7080dd/JCMM-27-2136-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/dd94e8711095/JCMM-27-2136-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/b0b9f8413051/JCMM-27-2136-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/b4ec6a24a867/JCMM-27-2136-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/98ab441db4e1/JCMM-27-2136-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/4a3be682274c/JCMM-27-2136-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/6f2087e096ce/JCMM-27-2136-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/814e1c7080dd/JCMM-27-2136-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/dd94e8711095/JCMM-27-2136-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/b0b9f8413051/JCMM-27-2136-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/b4ec6a24a867/JCMM-27-2136-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/98ab441db4e1/JCMM-27-2136-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/4a3be682274c/JCMM-27-2136-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/6f2087e096ce/JCMM-27-2136-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5798/10399531/814e1c7080dd/JCMM-27-2136-g004.jpg

相似文献

[1]
Feasibility of repairing skin defects by VEGF gene-modified iPS-HFSCs seeded on a 3D printed scaffold containing astragalus polysaccharide.

J Cell Mol Med. 2023-8

[2]
Gelatin-chondroitin-6-sulfate-hyaluronic acid scaffold seeded with vascular endothelial growth factor 165 modified hair follicle stem cells as a three-dimensional skin substitute.

Stem Cell Res Ther. 2014-10-20

[3]
Feasibility of repairing full-thickness skin defects by iPSC-derived epithelial stem cells seeded on a human acellular amniotic membrane.

Stem Cell Res Ther. 2019-5-31

[4]
Astragalus polysaccharide-containing 3D-printed scaffold for traumatized skin repair and proteomic study.

J Cell Mol Med. 2024-8

[5]
Dermal papilla cells improve the wound healing process and generate hair bud-like structures in grafted skin substitutes using hair follicle stem cells.

Stem Cells Transl Med. 2014-10

[6]
A 3D-printed acinar-mimetic silk fibroin-collagen-astragalus polysaccharide scaffold for tissue reconstruction and functional repair of damaged parotid glands.

Int J Biol Macromol. 2024-10

[7]
VEGF165 induces differentiation of hair follicle stem cells into endothelial cells and plays a role in in vivo angiogenesis.

J Cell Mol Med. 2017-8

[8]
[Experimental study on vascular endothelial growth factor 165 gene-modified rat hair follicle stem cells mediated by lentiviral vector].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014-2

[9]
3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration.

Acta Biomater. 2023-7-15

[10]
Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.

Tissue Eng Part A. 2022-2

引用本文的文献

[1]
Genetic and bioactive functionalization of bioinks for 3D bioprinting.

Bioprocess Biosyst Eng. 2025-5-20

[2]
Astragalus polysaccharide-containing 3D-printed scaffold for traumatized skin repair and proteomic study.

J Cell Mol Med. 2024-8

[3]
Stimulation by exosomes from hypoxia-preconditioned hair follicle mesenchymal stem cells facilitates mitophagy by inhibiting the PI3K/AKT/mTOR signaling pathway to alleviate ulcerative colitis.

Theranostics. 2024-7-8

本文引用的文献

[1]
Promotion of angiogenesis in vitro by Astragalus polysaccharide via activation of TLR4 signaling pathway.

J Food Biochem. 2022-10

[2]
Chitosan/Sodium Alginate/Velvet Antler Blood Peptides Hydrogel Promoted Wound Healing by Regulating PI3K/AKT/mTOR and SIRT1/NF-κB Pathways.

Front Pharmacol. 2022-6-16

[3]
A "cell-free treatment" for tendon injuries: adipose stem cell-derived exosomes.

Eur J Med Res. 2022-5-28

[4]
Microbiota and maintenance of skin barrier function.

Science. 2022-5-27

[5]
Single-cell transcriptomics reveals lineage trajectory of human scalp hair follicle and informs mechanisms of hair graying.

Cell Discov. 2022-5-24

[6]
Astragalus Polysaccharides/PVA Nanofiber Membranes Containing Astragaloside IV-Loaded Liposomes and Their Potential Use for Wound Healing.

Evid Based Complement Alternat Med. 2022-5-11

[7]
Radix Astragalus Polysaccharide Accelerates Angiogenesis by Activating AKT/eNOS to Promote Nerve Regeneration and Functional Recovery.

Front Pharmacol. 2022-4-1

[8]
MiR-149-5p promotes β-catenin-induced goat hair follicle stem cell differentiation.

In Vitro Cell Dev Biol Anim. 2022-4

[9]
Generation of iPS cell line (ICGi040-A) from skin fibroblasts of a patient with ring small supernumerary marker chromosome 4.

Stem Cell Res. 2022-5

[10]
Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications.

Int J Biol Macromol. 2022-5-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索