Orthopaedic-BioMechanics Research Group, University of Birjand, Birjand, Iran.
Department of Mechanical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.
Cartilage. 2023 Dec;14(4):413-423. doi: 10.1177/19476035231166126. Epub 2023 Jun 2.
Herewith, we report the development of Orthopedic Digital Image Analysis (ODIA) software that is developed to obtain quantitative measurements of knee osteoarthritis (OA) radiographs automatically. Manual segmentation and measurement of OA parameters currently hamper large-cohort analyses, and therefore, automated and reproducible methods are a valuable addition in OA research. This study aims to test the automated ODIA measurements and compare them with available manual Knee Imaging Digital Analysis (KIDA) measurements as comparison.
This study included data from the CHECK (Cohort Hip and Cohort Knee) initiative, a prospective multicentre cohort study in the Netherlands with 1,002 participants. Knee radiographs obtained at baseline of the CHECK cohort were included and mean medial/lateral joint space width (JSW), minimal JSW, joint line convergence angle (JLCA), eminence heights, and subchondral bone intensities were compared between ODIA and KIDA.
Of the potential 2,004 radiographs, 1,743 were included for analyses. Poor intraclass correlation coefficients (ICCs) were reported for the JLCA (0.422) and minimal JSW (0.299). The mean medial and lateral JSW, eminence height, and subchondral bone intensities reported a moderate to good ICC (0.7 or higher). Discrepancies in JLCA and minimal JSW between the 2 methods were mostly a problem in the lateral tibia plateau.
The current ODIA tool provides important measurements of OA parameters in an automated manner from standard radiographs of the knee. Given the automated and computerized methodology that has very high reproducibility, ODIA is suitable for large epidemiological cohorts with various follow-up time points to investigate structural progression, such as CHECK or the Osteoarthritis Initiative (OAI).
本研究旨在报告一种新型的骨科数字图像分析(ODIA)软件的研发,该软件可用于自动获取膝关节骨关节炎(OA)X 线片的定量测量值。目前,OA 参数的手动分割和测量方法限制了大样本队列研究的开展,因此,自动且可重复的方法是 OA 研究的有益补充。本研究旨在测试自动 ODIA 测量值,并将其与现有的手动膝关节成像数字分析(KIDA)测量值进行比较。
本研究纳入了荷兰前瞻性多中心队列研究 CHECK(髋关节和膝关节队列)的队列数据,共纳入了 1002 名参与者。该研究纳入了 CHECK 队列基线时的膝关节 X 线片,比较了 ODIA 和 KIDA 两种方法测量的内侧/外侧关节间隙宽度(JSW)平均值、最小 JSW、关节线会聚角(JLCA)、隆起高度和软骨下骨骨密度。
在 2004 张潜在 X 线片中,有 1743 张 X 线片可用于分析。JLCA(0.422)和最小 JSW(0.299)的组内相关系数(ICC)较差。内侧和外侧 JSW 平均值、隆起高度和软骨下骨骨密度的 ICC 报告为中度至高度(0.7 或更高)。两种方法之间 JLCA 和最小 JSW 的差异主要存在于外侧胫骨平台。
目前的 ODIA 工具可自动从膝关节标准 X 线片中获取 OA 参数的重要测量值。鉴于该方法具有自动化和计算机化的特点,且重复性非常高,因此适用于具有各种随访时间点的大型流行病学队列,如 CHECK 或 Osteoarthritis Initiative(OAI),以研究结构进展。