Suppr超能文献

非小细胞肺癌新辅助免疫治疗疗效预测与监测的进展

Advances in efficacy prediction and monitoring of neoadjuvant immunotherapy for non-small cell lung cancer.

作者信息

Wang Yunzhen, Huang Sha, Feng Xiangwei, Xu Wangjue, Luo Raojun, Zhu Ziyi, Zeng Qingxin, He Zhengfu

机构信息

Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Department of Thoracic Surgery, Longyou County People's Hospital, Longyou, China.

出版信息

Front Oncol. 2023 May 17;13:1145128. doi: 10.3389/fonc.2023.1145128. eCollection 2023.

Abstract

The use of immune checkpoint inhibitors (ICIs) has become mainstream in the treatment of non-small cell lung cancer (NSCLC). The idea of harnessing the immune system to fight cancer is fast developing. Neoadjuvant treatment in NSCLC is undergoing unprecedented change. Chemo-immunotherapy combinations not only seem to achieve population-wide treating coverage irrespective of PD-L1 expression but also enable achieving a pathological complete response (pCR). Despite these recent advancements in neoadjuvant chemo-immunotherapy, not all patients respond favorably to treatment with ICIs plus chemo and may even suffer from severe immune-related adverse effects (irAEs). Similar to selection for target therapy, identifying patients most likely to benefit from chemo-immunotherapy may be valuable. Recently, several prognostic and predictive factors associated with the efficacy of neoadjuvant immunotherapy in NSCLC, such as tumor-intrinsic biomarkers, tumor microenvironment biomarkers, liquid biopsies, microbiota, metabolic profiles, and clinical characteristics, have been described. However, a specific and sensitive biomarker remains to be identified. Recently, the construction of prediction models for ICI therapy using novel tools, such as multi-omics factors, proteomic tests, host immune classifiers, and machine learning algorithms, has gained attention. In this review, we provide a comprehensive overview of the different positive prognostic and predictive factors in treating preoperative patients with ICIs, highlight the recent advances made in the efficacy prediction of neoadjuvant immunotherapy, and provide an outlook for joint predictors.

摘要

免疫检查点抑制剂(ICI)的使用已成为非小细胞肺癌(NSCLC)治疗的主流。利用免疫系统对抗癌症的理念正在迅速发展。NSCLC的新辅助治疗正在经历前所未有的变革。化疗-免疫疗法联合不仅似乎能实现广泛的治疗覆盖,而不考虑PD-L1表达情况,还能实现病理完全缓解(pCR)。尽管新辅助化疗-免疫疗法最近取得了这些进展,但并非所有患者对ICI加化疗的治疗反应良好,甚至可能遭受严重的免疫相关不良反应(irAE)。与靶向治疗的选择类似,识别最有可能从化疗-免疫疗法中获益的患者可能很有价值。最近,已经描述了一些与NSCLC新辅助免疫疗法疗效相关的预后和预测因素,如肿瘤内在生物标志物、肿瘤微环境生物标志物、液体活检、微生物群、代谢谱和临床特征。然而,仍有待确定一种特异性和敏感性高的生物标志物。最近,使用多组学因素、蛋白质组学检测、宿主免疫分类器和机器学习算法等新工具构建ICI治疗预测模型受到了关注。在这篇综述中,我们全面概述了使用ICI治疗术前患者时不同的阳性预后和预测因素,强调了新辅助免疫疗法疗效预测方面的最新进展,并对联合预测指标进行了展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8074/10229830/2d0fb20ae2b3/fonc-13-1145128-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验