Suppr超能文献

非小细胞肺癌免疫治疗后临床终点预测的多组学方法:综述

Multi-Omics Approaches for the Prediction of Clinical Endpoints after Immunotherapy in Non-Small Cell Lung Cancer: A Comprehensive Review.

作者信息

Bourbonne Vincent, Geier Margaux, Schick Ulrike, Lucia François

机构信息

Radiation Oncology Department, Regional University Hospital, 29200 Brest, France.

LaTIM, UMR 1101 INSERM, University of Brest, 29200 Brest, France.

出版信息

Biomedicines. 2022 May 26;10(6):1237. doi: 10.3390/biomedicines10061237.

Abstract

Immune checkpoint inhibitors (ICI) have revolutionized the management of locally advanced and advanced non-small lung cancer (NSCLC). With an improvement in the overall survival (OS) as both first- and second-line treatments, ICIs, and especially programmed-death 1 (PD-1) and programmed-death ligands 1 (PD-L1), changed the landscape of thoracic oncology. The PD-L1 level of expression is commonly accepted as the most used biomarker, with both prognostic and predictive values. However, even in a low expression level of PD-L1, response rates remain significant while a significant number of patients will experience hyperprogression or adverse events. The dentification of such subtypes is thus of paramount importance. While several studies focused mainly on the prediction of the PD-L1 expression status, others aimed directly at the development of prediction/prognostic models. The response to ICIs depends on a complex physiopathological cascade, intricating multiple mechanisms from the molecular to the macroscopic level. With the high-throughput extraction of features, omics approaches aim for the most comprehensive assessment of each patient. In this article, we will review the place of the different biomarkers (clinical, biological, genomics, transcriptomics, proteomics and radiomics), their clinical implementation and discuss the most recent trends projecting on the future steps in prediction modeling in NSCLC patients treated with ICI.

摘要

免疫检查点抑制剂(ICI)彻底改变了局部晚期和晚期非小细胞肺癌(NSCLC)的治疗方式。作为一线和二线治疗,ICI,尤其是程序性死亡蛋白1(PD-1)和程序性死亡配体1(PD-L1),提高了总生存期(OS),改变了胸部肿瘤学的格局。PD-L1表达水平通常被认为是最常用的生物标志物,具有预后和预测价值。然而,即使在PD-L1低表达水平时,缓解率仍然可观,同时仍有相当数量的患者会出现疾病快速进展或不良事件。因此,识别这些亚型至关重要。虽然一些研究主要集中于预测PD-L1表达状态,但其他研究则直接致力于开发预测/预后模型。对ICI的反应取决于一个复杂的生理病理级联反应,涉及从分子水平到宏观水平的多种机制。通过高通量特征提取,组学方法旨在对每位患者进行最全面的评估。在本文中,我们将回顾不同生物标志物(临床、生物学、基因组学、转录组学、蛋白质组学和放射组学)的地位、它们的临床应用,并讨论NSCLC患者接受ICI治疗时预测建模未来步骤的最新趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bce1/9219996/11e7a9b4964d/biomedicines-10-01237-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验