Suppr超能文献

鉴定和免疫组化鉴定特发性肺纤维化疾病中与铜死亡相关的分子簇。

Identification and immunological characterization of cuproptosis-related molecular clusters in idiopathic pulmonary fibrosis disease.

机构信息

Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo, China.

Department of Pulmonary and Critial Care medicine, Qinghai provincial people's hospital, Xining, China.

出版信息

Front Immunol. 2023 May 17;14:1171445. doi: 10.3389/fimmu.2023.1171445. eCollection 2023.

Abstract

BACKGROUND

Idiopathic pulmonary fibrosis (IPF) has attracted considerable attention worldwide and is challenging to diagnose. Cuproptosis is a new form of cell death that seems to be associated with various diseases. However, whether cuproptosis-related genes (CRGs) play a role in regulating IPF disease is unknown. This study aims to analyze the effect of CRGs on the progression of IPF and identify possible biomarkers.

METHODS

Based on the GSE38958 dataset, we systematically evaluated the differentially expressed CRGs and immune characteristics of IPF disease. We then explored the cuproptosis-related molecular clusters, the related immune cell infiltration, and the biological characteristics analysis. Subsequently, a weighted gene co-expression network analysis (WGCNA) was performed to identify cluster-specific differentially expressed genes. Lastly, the eXtreme Gradient Boosting (XGB) machine-learning model was chosen for the analysis of prediction and external datasets validated the predictive efficiency.

RESULTS

Nine differentially expressed CRGs were identified between healthy and IPF patients. IPF patients showed higher monocytes and monophages M0 infiltration and lower naive B cells and memory resting T CD4 cells infiltration than healthy individuals. A positive relationship was found between activated dendritic cells and CRGs of LIPT1, LIAS, GLS, and DBT. We also identified cuproptosis subtypes in IPF patients. Go and KEGG pathways analysis demonstrated that cluster-specific differentially expressed genes in Cluster 2 were closely related to monocyte aggregation, ubiquitin ligase complex, and ubiquitin-mediated proteolysis, among others. We also constructed an XGB machine model to diagnose IPF, presenting the best performance with a relatively lower residual and higher area under the curve (AUC= 0.700) and validated by external validation datasets (GSE33566, AUC = 0.700). The analysis of the nomogram model demonstrated that XKR6, MLLT3, CD40LG, and HK3 might be used to diagnose IPF disease. Further analysis revealed that CD40LG was significantly associated with IPF.

CONCLUSION

Our study systematically illustrated the complicated relationship between cuproptosis and IPF disease, and constructed an effective model for the diagnosis of IPF disease patients.

摘要

背景

特发性肺纤维化 (IPF) 在全球范围内受到广泛关注,其诊断具有挑战性。铜死亡是一种新的细胞死亡形式,似乎与各种疾病有关。然而,铜死亡相关基因 (CRG) 是否在调节 IPF 疾病中发挥作用尚不清楚。本研究旨在分析 CRG 对 IPF 进展的影响,并确定可能的生物标志物。

方法

基于 GSE38958 数据集,我们系统地评估了 IPF 疾病中差异表达的 CRG 和免疫特征。然后,我们探索了铜死亡相关的分子聚类、相关免疫细胞浸润和生物学特征分析。随后,进行了加权基因共表达网络分析 (WGCNA),以鉴定聚类特异性差异表达基因。最后,选择极端梯度提升 (XGB) 机器学习模型进行分析预测,并验证外部数据集的预测效率。

结果

在健康人和 IPF 患者之间鉴定出 9 个差异表达的 CRG。与健康个体相比,IPF 患者的单核细胞和单核细胞 M0 浸润较高,而幼稚 B 细胞和记忆静息 T CD4 细胞浸润较低。激活树突状细胞与 LIPT1、LIAS、GLS 和 DBT 的 CRG 呈正相关。我们还在 IPF 患者中鉴定出铜死亡亚型。GO 和 KEGG 途径分析表明,Cluster 2 中聚类特异性差异表达基因与单核细胞聚集、泛素连接酶复合物和泛素介导的蛋白水解等密切相关。我们还构建了一个用于诊断 IPF 的 XGB 机器模型,通过外部验证数据集 (GSE33566,AUC=0.700) 验证,表现出较好的性能,具有较低的残差和较高的曲线下面积 (AUC=0.700)。列线图模型的分析表明,XKR6、MLLT3、CD40LG 和 HK3 可能用于诊断 IPF 疾病。进一步分析表明,CD40LG 与 IPF 显著相关。

结论

本研究系统地说明了铜死亡与 IPF 疾病之间的复杂关系,并构建了一种有效的 IPF 疾病患者诊断模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98d2/10230064/ecbec6f8cb2f/fimmu-14-1171445-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验