Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, United States.
Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, TX 78712, United States.
J Phys Chem Lett. 2023 Jun 15;14(23):5297-5304. doi: 10.1021/acs.jpclett.3c00997. Epub 2023 Jun 2.
Reactive hot spots on plasmonic nanoparticles have attracted attention for photocatalysis as they allow for efficient catalyst design. While sharp tips have been identified as optimal features for field enhancement and hot electron generation, the locations of catalytically promising d-band holes are less clear. Here we exploit d-band hole-enhanced dissolution of gold nanorods as a model reaction to locate reactive hot spots produced from direct interband transitions, while the role of the plasmon is to follow the reaction optically in real time. Using a combination of single-particle electrochemistry and single-particle spectroscopy, we determine that d-band holes increase the rate of gold nanorod electrodissolution at their tips. While nanorods dissolve isotropically in the dark, the same nanoparticles switch to tip-enhanced dissolution upon illimitation with 488 nm light. Electron microscopy confirms that dissolution enhancement is exclusively at the tips of the nanorods, consistent with previous theoretical work that predicts the location of d-band holes. We, therefore, conclude that d-band holes drive reactions selectively at the nanorod tips.
等离子体纳米粒子上的反应热点因其能够实现高效的催化剂设计而在光催化中引起了关注。虽然已经确定了尖锐的尖端是增强场和产生热电子的最佳特征,但催化上有前途的 d 带空穴的位置则不太清楚。在这里,我们利用金纳米棒的 d 带空穴增强溶解作为模型反应来定位由直接带间跃迁产生的反应热点,而等离子体的作用是实时光学地跟踪反应。我们使用单粒子电化学和单粒子光谱学的组合,确定 d 带空穴会增加金纳米棒在其尖端的电溶解速率。虽然纳米棒在黑暗中各向同性地溶解,但在用 488nm 光照射时,相同的纳米颗粒会切换到尖端增强溶解。电子显微镜证实,溶解增强仅发生在纳米棒的尖端,这与先前预测 d 带空穴位置的理论工作一致。因此,我们得出结论,d 带空穴选择性地在纳米棒尖端驱动反应。