Hu Shu, Goerlitzer Eric S A, Lin Qianqi, de Nijs Bart, Silkin Vyacheslav M, Baumberg Jeremy J
Department of Physics, Xiamen University, Xiamen, China.
Nanophotonics Centre, Dept. of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Nat Commun. 2025 Apr 9;16(1):3370. doi: 10.1038/s41467-025-58578-9.
Plasmonic nanocavities offer exceptional confinement of light, making them effective for energy conversion applications. However, limitations with stability, materials, and chemical activity have impeded their practical implementation. Here we integrate ultrathin palladium (Pd) metal films from sub- to few- atomic monolayers inside plasmonic nanocavities using underpotential deposition. Despite the poor plasmonic properties of bulk Pd in the visible region, minimal loss in optical field enhancement is delivered along with Pd chemical enhancement, as confirmed by ab initio calculations. Such synergistic effects significantly enhance photocatalytic activity of the plasmonic nanocavities as well as photostability by suppressing surface atom migration. We show the atomic alchemical-glazing approach is general for a range of catalytic metals that bridge plasmonic and chemical catalysis, yielding broad applications in photocatalysis for optimal chemical transformation.
等离子体纳米腔对光具有出色的限制作用,使其在能量转换应用中十分有效。然而,稳定性、材料和化学活性方面的限制阻碍了它们的实际应用。在此,我们利用欠电位沉积法将亚原子单层至几个原子单层的超薄钯(Pd)金属膜整合到等离子体纳米腔内。尽管块状Pd在可见光区域的等离子体特性较差,但从头算计算证实,在实现Pd化学增强的同时,光场增强的损失极小。这种协同效应通过抑制表面原子迁移,显著提高了等离子体纳米腔的光催化活性以及光稳定性。我们表明,原子炼金术镀膜方法对于一系列连接等离子体催化和化学催化的催化金属来说是通用的,在光催化中可实现广泛应用以实现最佳化学转化。