Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom.
Eur Heart J Cardiovasc Imaging. 2023 Sep 26;24(10):1302-1317. doi: 10.1093/ehjci/jead124.
Heart failure demographics have evolved in past decades with the development of improved diagnostics, therapies, and prevention. Cardiac magnetic resonance (CMR) has developed in a similar timeframe to become the gold-standard non-invasive imaging modality for characterizing diseases causing heart failure. CMR techniques to assess cardiac morphology and function have progressed since their first use in the 1980s. Increasingly efficient acquisition protocols generate high spatial and temporal resolution images in less time. This has enabled new methods of characterizing cardiac systolic and diastolic function such as strain analysis, exercise real-time cine imaging and four-dimensional flow. A key strength of CMR is its ability to non-invasively interrogate the myocardial tissue composition. Gadolinium contrast agents revolutionized non-invasive cardiac imaging with the late gadolinium enhancement technique. Further advances enabled quantitative parametric mapping to increase sensitivity at detecting diffuse pathology. Novel methods such as diffusion tensor imaging and artificial intelligence-enhanced image generation are on the horizon. Magnetic resonance spectroscopy (MRS) provides a window into the molecular environment of the myocardium. Phosphorus (31P) spectroscopy can inform the status of cardiac energetics in health and disease. Proton (1H) spectroscopy complements this by measuring creatine and intramyocardial lipids. Hyperpolarized carbon (13C) spectroscopy is a novel method that could further our understanding of dynamic cardiac metabolism. CMR of other organs such as the lungs may add further depth into phenotypes of heart failure. The vast capabilities of CMR should be deployed and interpreted in context of current heart failure challenges.
在过去几十年中,随着诊断、治疗和预防手段的改进,心力衰竭的流行病学特征发生了演变。心脏磁共振(CMR)在相似的时间内发展起来,成为诊断心力衰竭病因的黄金标准无创成像方式。自 20 世纪 80 年代首次应用以来,评估心脏形态和功能的 CMR 技术已经取得了进展。越来越高效的采集方案可在更短的时间内生成具有更高空间和时间分辨率的图像。这使得人们能够采用新方法来评估心脏的收缩和舒张功能,如应变分析、实时运动 cine 成像和四维血流。CMR 的一个关键优势在于其能够无创性地检查心肌组织成分。钆造影剂的应用使心脏磁共振的晚期钆增强技术发生了革命性的变化。进一步的进展使定量参数映射技术得以提高,从而提高了检测弥漫性病变的灵敏度。扩散张量成像和人工智能增强图像生成等新方法也即将出现。磁共振波谱(MRS)为心肌的分子环境提供了一个窗口。磷(31P)波谱可以了解心脏能量代谢在健康和疾病中的状态。质子(1H)波谱通过测量肌酸和心肌内脂质来补充这一点。极化碳(13C)波谱是一种新方法,可以进一步加深我们对心脏代谢动力学的理解。对肺部等其他器官的 CMR 检查可能会进一步深入了解心力衰竭的表型。CMR 的广泛功能应该在当前心力衰竭挑战的背景下进行部署和解读。