Suppr超能文献

基于成像照明的裂隙灯图像自动分类。

Automatic Classification of Slit-Lamp Photographs by Imaging Illumination.

机构信息

Department of Ophthalmology and Visual Sciences, School of Medicine, University of Michigan, Ann Arbor, MI.

Department of Biomedical Engineering, Duke University, Durham, NC.

出版信息

Cornea. 2024 Apr 1;43(4):419-424. doi: 10.1097/ICO.0000000000003318. Epub 2023 May 31.

Abstract

PURPOSE

The aim of this study was to facilitate deep learning systems in image annotations for diagnosing keratitis type by developing an automated algorithm to classify slit-lamp photographs (SLPs) based on illumination technique.

METHODS

SLPs were collected from patients with corneal ulcer at Kellogg Eye Center, Bascom Palmer Eye Institute, and Aravind Eye Care Systems. Illumination techniques were slit beam, diffuse white light, diffuse blue light with fluorescein, and sclerotic scatter (ScS). Images were manually labeled for illumination and randomly split into training, validation, and testing data sets (70%:15%:15%). Classification algorithms including MobileNetV2, ResNet50, LeNet, AlexNet, multilayer perceptron, and k-nearest neighborhood were trained to distinguish 4 type of illumination techniques. The algorithm performances on the test data set were evaluated with 95% confidence intervals (CIs) for accuracy, F1 score, and area under the receiver operator characteristics curve (AUC-ROC), overall and by class (one-vs-rest).

RESULTS

A total of 12,132 images from 409 patients were analyzed, including 41.8% (n = 5069) slit-beam photographs, 21.2% (2571) diffuse white light, 19.5% (2364) diffuse blue light, and 17.5% (2128) ScS. MobileNetV2 achieved the highest overall F1 score of 97.95% (CI, 97.94%-97.97%), AUC-ROC of 99.83% (99.72%-99.9%), and accuracy of 98.98% (98.97%-98.98%). The F1 scores for slit beam, diffuse white light, diffuse blue light, and ScS were 97.82% (97.80%-97.84%), 96.62% (96.58%-96.66%), 99.88% (99.87%-99.89%), and 97.59% (97.55%-97.62%), respectively. Slit beam and ScS were the 2 most frequently misclassified illumination.

CONCLUSIONS

MobileNetV2 accurately labeled illumination of SLPs using a large data set of corneal images. Effective, automatic classification of SLPs is key to integrating deep learning systems for clinical decision support into practice workflows.

摘要

目的

本研究旨在开发一种基于照明技术自动对裂隙灯照片(SLP)进行分类的算法,以促进深度学习系统在角膜炎类型的图像标注中应用。

方法

从巴斯科姆·帕尔默眼科研究所(Bascom Palmer Eye Institute)和阿拉文德眼科护理系统(Aravind Eye Care Systems)的角膜溃疡患者中收集 SLP。照明技术包括狭缝光束、漫射白光、带有荧光素的漫射蓝光和硬化散射(ScS)。图像根据照明技术进行手动标记,并随机分为训练、验证和测试数据集(70%:15%:15%)。使用 MobileNetV2、ResNet50、LeNet、AlexNet、多层感知机和 k-最近邻分类算法来区分 4 种照明技术。使用 95%置信区间(CI)评估算法在测试数据集上的准确性、F1 得分和接收器操作特征曲线下的面积(AUC-ROC),总体和按类别(一对一)。

结果

共分析了来自 409 名患者的 12132 张图像,包括 41.8%(n=5069)狭缝光束照片、21.2%(2571)漫射白光、19.5%(2364)漫射蓝光和 17.5%(2128)ScS。MobileNetV2 的总体 F1 得分最高,为 97.95%(97.94%-97.97%),AUC-ROC 为 99.83%(99.72%-99.9%),准确率为 98.98%(98.97%-98.98%)。狭缝光束、漫射白光、漫射蓝光和 ScS 的 F1 得分分别为 97.82%(97.80%-97.84%)、96.62%(96.58%-96.66%)、99.88%(99.87%-99.89%)和 97.59%(97.55%-97.62%)。狭缝光束和 ScS 是最常被错误分类的两种照明。

结论

MobileNetV2 使用大型角膜图像数据集准确地标记了 SLP 的照明。有效地、自动地对 SLP 进行分类是将深度学习系统集成到临床决策支持工作流程中的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bfc/10689570/890c06bd954a/nihms-1895890-f0001.jpg

相似文献

1
Automatic Classification of Slit-Lamp Photographs by Imaging Illumination.基于成像照明的裂隙灯图像自动分类。
Cornea. 2024 Apr 1;43(4):419-424. doi: 10.1097/ICO.0000000000003318. Epub 2023 May 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验