文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定制支架用于功能化 DNA 折纸的直接组装。

Customized Scaffolds for Direct Assembly of Functionalized DNA Origami.

机构信息

College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States.

Institute for Advanced Biomedical Research, Manassas, Virginia 20110-2201, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Jun 14;15(23):27759-27773. doi: 10.1021/acsami.3c05690. Epub 2023 Jun 2.


DOI:10.1021/acsami.3c05690
PMID:37267624
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10273176/
Abstract

Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.

摘要

功能化 DNA 折纸纳米颗粒(DNA-NPs)被用作各种生物医学应用中的纳米载体,包括靶向药物输送和疫苗开发。DNA-NPs 可以设计成一维、二维和三维的广泛纳米结构,具有高结构保真度。此外,DNA-NPs 的可寻址性能够精确组织功能部分,从而提高靶向性、驱动性和稳定性。DNA-NPs 通常通过化学修饰的订书链进行功能化,这些订书链可以进一步与其他聚合物和蛋白质结合,用于预期的应用。尽管这种功能化方法可以非常有效地控制功能部分的化学计量和组织,但只有不到一半的允许位点可以通过订书链修饰来访问。此外,当需要大量的功能化,如用于跟踪的荧光团和用于稳定性的化学修饰(不需要空间精确组织)时,DNA-NP 功能化会迅速变得昂贵。为了促进功能化 DNA-NPs 的合成,我们提出了一种基于不对称聚合酶链反应(aPCR)协议的简单而强大的策略,该策略允许直接合成可以随机修饰和/或通过序列设计精确修饰的定制长度支架。我们通过生产和表征带有胺基团用于染料功能化、带有磷硫键用于稳定性和用于表面固定化的生物素的高度修饰支架链,证明了我们策略的潜力。我们进一步通过合成包括结合环和适体序列的支架验证了我们用于精确连接生物分子的序列设计方法,这些支架可用于标记生物分子的核酸的直接杂交或蛋白质靶标的结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15d/10273176/8312bc82553e/am3c05690_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15d/10273176/dff241e2a139/am3c05690_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15d/10273176/725a632d5532/am3c05690_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15d/10273176/2f24e4c89248/am3c05690_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15d/10273176/6155d5e7f948/am3c05690_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15d/10273176/8312bc82553e/am3c05690_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15d/10273176/dff241e2a139/am3c05690_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15d/10273176/725a632d5532/am3c05690_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15d/10273176/2f24e4c89248/am3c05690_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15d/10273176/6155d5e7f948/am3c05690_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e15d/10273176/8312bc82553e/am3c05690_0006.jpg

相似文献

[1]
Customized Scaffolds for Direct Assembly of Functionalized DNA Origami.

ACS Appl Mater Interfaces. 2023-6-14

[2]
Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies.

Molecules. 2020-7-26

[3]
Parallel Functionalization of DNA Origami.

Methods Mol Biol. 2023

[4]
Biotechnological mass production of DNA origami.

Nature. 2017-12-6

[5]
Toward larger DNA origami.

Nano Lett. 2014-9-8

[6]
Self-folding RCA product into a parallel monolayer DNA nanoribbon and woven into a nano-fence structure by a short bridge strand.

J Colloid Interface Sci. 2025-1

[7]
Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds.

ACS Appl Mater Interfaces. 2018-7-12

[8]
Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics.

Acc Chem Res. 2014-5-22

[9]
Building DNA nanostructures for molecular computation, templated assembly, and biological applications.

Acc Chem Res. 2014-4-10

[10]
Aptamer-Integrated Scaffolds for Biologically Functional DNA Origami Structures.

ACS Appl Mater Interfaces. 2021-8-25

引用本文的文献

[1]
Design and Assembly of a Cargo-Agnostic Hollow Two-Lidded DNA Origami Box.

ACS Appl Bio Mater. 2025-8-18

[2]
Design and Characterization of a Gene-Encoding DNA Nanoparticle in a Cell-Free Transcription-Translation System.

ACS Appl Nano Mater. 2024-6-14

[3]
Plugging synthetic DNA nanoparticles into the central dogma of life.

Chem Commun (Camb). 2024-12-19

[4]
A Multivalent DNA Nanoparticle/Peptide Hybrid Molecular Modality for the Modulation of Protein-Protein Interactions in the Tumor Microenvironment.

Adv Nanobiomed Res. 2024-7

[5]
Purification of DNA Nanoparticles Using Photocleavable Biotin Tethers.

ACS Appl Mater Interfaces. 2024-5-1

[6]
Dominant Analytical Techniques in DNA Nanotechnology for Various Applications.

Anal Chem. 2024-3-5

[7]
DNA tetrahedral nanostructures for the biomedical application and spatial orientation of biomolecules.

Bioact Mater. 2023-11-24

本文引用的文献

[1]
DNA origami presenting the receptor binding domain of SARS-CoV-2 elicit robust protective immune response.

Commun Biol. 2023-3-23

[2]
Determining the Cytosolic Stability of Small DNA Nanostructures .

Nano Lett. 2022-6-22

[3]
Self-Assembled DNA Nanostructures-Based Nanocarriers Enabled Functional Nucleic Acids Delivery.

ACS Appl Bio Mater. 2020-5-18

[4]
Development of an optimization pipeline of asymmetric PCR towards the generation of DNA aptamers: a guide for beginners.

World J Microbiol Biotechnol. 2022-1-6

[5]
The role of DNA nanostructures in the catalytic properties of an allosterically regulated protease.

Sci Adv. 2022-1-7

[6]
DNA Origami Frameworks Enabled Self-Protective siRNA Delivery for Dual Enhancement of Chemo-Photothermal Combination Therapy.

Small. 2021-11

[7]
Strategies for the Site-Specific Decoration of DNA Origami Nanostructures with Functionally Intact Proteins.

ACS Nano. 2021-9-28

[8]
Aptamer-Integrated Scaffolds for Biologically Functional DNA Origami Structures.

ACS Appl Mater Interfaces. 2021-8-25

[9]
Site-specific facet protection of gold nanoparticles inside a 3D DNA origami box: a tool for molecular plasmonics.

Chem Commun (Camb). 2021-3-28

[10]
DNA origami-based protein networks: from basic construction to emerging applications.

Chem Soc Rev. 2021-2-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索