College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States.
Institute for Advanced Biomedical Research, Manassas, Virginia 20110-2201, United States.
ACS Appl Mater Interfaces. 2023 Jun 14;15(23):27759-27773. doi: 10.1021/acsami.3c05690. Epub 2023 Jun 2.
Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.
功能化 DNA 折纸纳米颗粒(DNA-NPs)被用作各种生物医学应用中的纳米载体,包括靶向药物输送和疫苗开发。DNA-NPs 可以设计成一维、二维和三维的广泛纳米结构,具有高结构保真度。此外,DNA-NPs 的可寻址性能够精确组织功能部分,从而提高靶向性、驱动性和稳定性。DNA-NPs 通常通过化学修饰的订书链进行功能化,这些订书链可以进一步与其他聚合物和蛋白质结合,用于预期的应用。尽管这种功能化方法可以非常有效地控制功能部分的化学计量和组织,但只有不到一半的允许位点可以通过订书链修饰来访问。此外,当需要大量的功能化,如用于跟踪的荧光团和用于稳定性的化学修饰(不需要空间精确组织)时,DNA-NP 功能化会迅速变得昂贵。为了促进功能化 DNA-NPs 的合成,我们提出了一种基于不对称聚合酶链反应(aPCR)协议的简单而强大的策略,该策略允许直接合成可以随机修饰和/或通过序列设计精确修饰的定制长度支架。我们通过生产和表征带有胺基团用于染料功能化、带有磷硫键用于稳定性和用于表面固定化的生物素的高度修饰支架链,证明了我们策略的潜力。我们进一步通过合成包括结合环和适体序列的支架验证了我们用于精确连接生物分子的序列设计方法,这些支架可用于标记生物分子的核酸的直接杂交或蛋白质靶标的结合。
ACS Appl Mater Interfaces. 2023-6-14
Molecules. 2020-7-26
Methods Mol Biol. 2023
Nature. 2017-12-6
Nano Lett. 2014-9-8
ACS Appl Mater Interfaces. 2018-7-12
Acc Chem Res. 2014-5-22
ACS Appl Mater Interfaces. 2021-8-25
ACS Appl Bio Mater. 2025-8-18
ACS Appl Nano Mater. 2024-6-14
Chem Commun (Camb). 2024-12-19
ACS Appl Mater Interfaces. 2024-5-1
Nano Lett. 2022-6-22
ACS Appl Bio Mater. 2020-5-18
World J Microbiol Biotechnol. 2022-1-6
ACS Appl Mater Interfaces. 2021-8-25
Chem Commun (Camb). 2021-3-28
Chem Soc Rev. 2021-2-15