Suppr超能文献

用于研究非酒精性脂肪性肝病纤维化进展预测因子的 NanoString GeoMx 空间转录组学实验的样本量计算。

Sample size calculation for a NanoString GeoMx spatial transcriptomics experiment to study predictors of fibrosis progression in non-alcoholic fatty liver disease.

机构信息

Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.

Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.

出版信息

Sci Rep. 2023 Jun 2;13(1):8943. doi: 10.1038/s41598-023-36187-0.

Abstract

Sample size calculation for spatial transcriptomics is a novel and understudied research topic. Prior publications focused on powering spatial transcriptomics studies to detect specific cell populations or spatially variable expression patterns on tissue slides. However, power calculations for translational or clinical studies often relate to the difference between patient groups, and this is poorly described in the literature. Here, we present a stepwise process for sample size calculation to identify predictors of fibrosis progression in non-alcoholic fatty liver disease as a case study. We illustrate how to infer study hypothesis from prior bulk RNA-sequencing data, gather input requirements and perform a simulation study to estimate required sample size to evaluate gene expression differences between patients with stable fibrosis and fibrosis progressors with NanoString GeoMx Whole Transcriptome Atlas assay.

摘要

空间转录组学的样本量计算是一个新颖且研究不足的研究课题。先前的出版物主要侧重于为空间转录组学研究提供动力,以检测组织切片上的特定细胞群体或空间变化表达模式。然而,转化或临床研究的功效计算通常与患者群体之间的差异有关,而这在文献中描述得很少。在这里,我们提出了一个逐步的样本量计算过程,以确定非酒精性脂肪性肝病纤维化进展的预测因子作为案例研究。我们说明了如何从先前的批量 RNA 测序数据中推断研究假设,收集输入要求并进行模拟研究,以估计使用 NanoString GeoMx 全转录组图谱测定法评估稳定纤维化患者和纤维化进展患者之间基因表达差异所需的样本量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34a9/10238473/1fb1d0a81508/41598_2023_36187_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验