Suppr超能文献

用于神经科学发现的单细胞和空间分辨基因组学方法的机遇与挑战。

Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery.

作者信息

Bonev Boyan, Castelo-Branco Gonçalo, Chen Fei, Codeluppi Simone, Corces M Ryan, Fan Jean, Heiman Myriam, Harris Kenneth, Inoue Fumitaka, Kellis Manolis, Levine Ariel, Lotfollahi Mo, Luo Chongyuan, Maynard Kristen R, Nitzan Mor, Ramani Vijay, Satijia Rahul, Schirmer Lucas, Shen Yin, Sun Na, Green Gilad S, Theis Fabian, Wang Xiao, Welch Joshua D, Gokce Ozgun, Konopka Genevieve, Liddelow Shane, Macosko Evan, Ali Bayraktar Omer, Habib Naomi, Nowakowski Tomasz J

机构信息

Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.

Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.

出版信息

Nat Neurosci. 2024 Dec;27(12):2292-2309. doi: 10.1038/s41593-024-01806-0. Epub 2024 Dec 3.

Abstract

Over the past decade, single-cell genomics technologies have allowed scalable profiling of cell-type-specific features, which has substantially increased our ability to study cellular diversity and transcriptional programs in heterogeneous tissues. Yet our understanding of mechanisms of gene regulation or the rules that govern interactions between cell types is still limited. The advent of new computational pipelines and technologies, such as single-cell epigenomics and spatially resolved transcriptomics, has created opportunities to explore two new axes of biological variation: cell-intrinsic regulation of cell states and expression programs and interactions between cells. Here, we summarize the most promising and robust technologies in these areas, discuss their strengths and limitations and discuss key computational approaches for analysis of these complex datasets. We highlight how data sharing and integration, documentation, visualization and benchmarking of results contribute to transparency, reproducibility, collaboration and democratization in neuroscience, and discuss needs and opportunities for future technology development and analysis.

摘要

在过去十年中,单细胞基因组学技术已能够对细胞类型特异性特征进行可扩展的分析,这极大地提高了我们研究异质组织中细胞多样性和转录程序的能力。然而,我们对基因调控机制或细胞类型之间相互作用规则的理解仍然有限。新的计算流程和技术的出现,如单细胞表观基因组学和空间分辨转录组学,为探索生物变异的两个新轴创造了机会:细胞状态和表达程序的细胞内在调控以及细胞间的相互作用。在这里,我们总结了这些领域中最有前景和最可靠的技术,讨论了它们的优势和局限性,并讨论了分析这些复杂数据集的关键计算方法。我们强调数据共享与整合、文档记录、可视化以及结果的基准测试如何促进神经科学的透明度、可重复性、合作与普及,并讨论未来技术开发和分析的需求与机遇。

相似文献

3
The emerging role of multiomics in aging research.多组学在衰老研究中的新兴作用。
Epigenomics. 2025 Jul 20:1-8. doi: 10.1080/17501911.2025.2533111.

引用本文的文献

本文引用的文献

1
Integrated multimodal cell atlas of Alzheimer's disease.阿尔茨海默病的综合多模态细胞图谱。
Nat Neurosci. 2024 Dec;27(12):2366-2383. doi: 10.1038/s41593-024-01774-5. Epub 2024 Oct 14.
2
Search and match across spatial omics samples at single-cell resolution.在单细胞分辨率下搜索和匹配空间组学样本。
Nat Methods. 2024 Oct;21(10):1818-1829. doi: 10.1038/s41592-024-02410-7. Epub 2024 Sep 18.
8
Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial DNA.单核体结构揭示了线粒体 DNA 的异质包装。
Nat Struct Mol Biol. 2024 Mar;31(3):568-577. doi: 10.1038/s41594-024-01225-6. Epub 2024 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验