Chen Yimin, Chen Liyu, Li Yingwei, Shen Kui
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
Small. 2023 Oct;19(40):e2303235. doi: 10.1002/smll.202303235. Epub 2023 Jun 3.
Metal-organic frameworks (MOFs) are proved to be good precursors to derive various nanomaterials with desirable functions, but so far the controllable synthesis of ordered mesoporous derivatives from MOFs has not been achieved. Herein, this work reports, for the first time, the construction of MOF-derived ordered mesoporous (OM) derivatives by developing a facile mesopore-inherited pyrolysis-oxidation strategy. This work demonstrates a particularly elegant example of this strategy, which involves the mesopore-inherited pyrolysis of OM-CeMOF into a OM-CeO @C composite, followed by the oxidation removal of its residual carbon, affording the corresponding OM-CeO . Furthermore, the good tunability of MOFs helps to allodially introduce zirconium into OM-CeO to regulate its acid-base property, thus boosting its catalytic activity for CO fixation. Impressively, the optimized Zr-doped OM-CeO can achieve above 16 times higher catalytic activity than its solid CeO counterpart, representing the first metal oxide-based catalyst to realize the complete cycloaddition of epichlorohydrin with CO under ambient temperature and pressure. This study not only develops a new MOF-based platform for enriching the family of ordered mesoporous nanomaterials, but also demonstrates an ambient catalytic system for CO fixation.
金属有机框架材料(MOFs)已被证明是衍生具有所需功能的各种纳米材料的良好前驱体,但到目前为止,尚未实现从MOFs可控合成有序介孔衍生物。在此,本工作首次报道了通过开发一种简便的介孔继承热解氧化策略来构建MOF衍生的有序介孔(OM)衍生物。这项工作展示了该策略的一个特别精妙的例子,即通过将OM-CeMOF进行介孔继承热解得到OM-CeO@C复合材料,然后通过氧化去除其残留碳,得到相应的OM-CeO。此外,MOFs良好的可调性有助于将锆异质引入OM-CeO以调节其酸碱性质,从而提高其对CO固定的催化活性。令人印象深刻的是,优化后的Zr掺杂OM-CeO的催化活性比其固体CeO对应物高出16倍以上,这是第一种在常温常压下实现环氧氯丙烷与CO完全环加成的金属氧化物基催化剂。这项研究不仅开发了一个新的基于MOF的平台来丰富有序介孔纳米材料家族,还展示了一种用于CO固定的常温催化体系。